Seagrass under stress - A measurement and testing design for the assessment of environmental factors in the intertidal zone of the Lower Saxony Wadden Sea

Authors

DOI:

https://doi.org/10.3112/erdkunde.2025.03.09

Keywords:

seagrass beds, Zostera noltii, Wadden Sea, currents, attenuation, automated measurements

Abstract

Seagrass meadows are a complex habitat and currently under threat, mainly by anthropogenic impacts, like coastal development and eutrophication, but also by extreme weather events, like heat waves and rising marine temperatures due to climate change. The populations of Zostera noltii along the Lower Saxony North Sea coast have significantly declined in recent years, necessitating urgent and intensive investigations to identify the causes in order to take necessary actions. Many studies on seagrass meadows are conducted through direct field investigations. However, these studies have drawbacks, as they can only provide a fragmented picture of living conditions, environmental influences, and changes within a complex ecosystem over time. This is especially true in the intertidal Wadden Sea, where access is limited to a few hours per day. Here, automated measuring instruments that collect data consistently over a long period offer a promising alternative, with the potential to significantly enhance data collection and our understanding of seagrass ecosystems. Here, we present the possible application and advantages of a measurement system for investigating key ecological parameters in intertidal seagrass meadows, including a new expandable measurement station equipped with a multi-parameter probe, current meters, and light sensors. In combination, these devices measure the environmental conditions at low and high tide to show a comprehensive picture of the growing conditions of Z. noltii. We discuss data processing, challenges in application, potential for expansion, and advantages, while also presenting example data. Unlike existing measurement devices, our developed measurement station has the advantage of expandability, accommodating more sensitive water-measuring devices, as well as a large battery capacity. Live data collection via a 3G network is also integrated and can be enhanced by mounting additional antennas. The current meters we use provide long-term, high-resolution current data from the intertidal seagrass meadows, leading to an understanding of the possible mechanical stressors Z. noltii is exposed to. We also applied several filters to the light and temperature data collected by low-cost sensors to extrapolate the attenuation at the seagrass meadows. When used correctly, automated measurement systems have great potential to provide high-resolution data on environmental conditions in Z. noltii meadows, enabling early detection of emerging stressors and facilitating the identification and evaluation of suitable sites for conservation or restoration.

References

Adolph W (2010) Praxistest Monitoring Küste 2008 Seegraskartierung - Gesamtbestandserfassung der eulitoralen Seegrasbestände im Niedersächsischen Wattenmeer und Bewertung nach EG-Wasserrahmenrichtlinie. NLWKN. Niedersachsen. https://www.nationalpark-wattenmeer.de/wp-content/uploads/2021/02/Seegras_2008_Adolph_2010.pdf

Balke T, Vovides A, Schwarz C, Chmura GL, Ladd C, Basyuni M (2021) Monitoring tidal hydrology in coastal wetlands with the “Mini Buoy”: Applications for mangrove restoration. Hydrology and Earth System Sciences 25: 1229–1244. https://doi.org/10.5194/hess-25-1229-2021

Barillé L, Robin M, Harin N, Bargain A, Launeau P (2010) Increase in seagrass distribution at Bourgneuf Bay (France) detected by spatial remote sensing. Aquatic Botany 92: 185–194. https://doi.org/10.1016/j.aquabot.2009.11.006

Bertelli CM, Unsworth RKF (2014) Protecting the hand that feeds us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat. Marine Pollution Bulletin 83: 425–429. https://doi.org/10.1016/j.marpolbul.2013.08.011

Boersma M, Grüner N, Signorelli NT, González PEM, Peck MA, Wiltshire KH (2016) Projecting effects of climate change on marine systems: Is the mean all that matters? Proceedings of the Royal Society B Biological Sciences 283: 20152274. https://doi.org/10.1098/rspb.2015.2274

Böse M, Ehlers J, Lehmkuhl F (2022) Deutschlands Norden. Berlin Heidelberg.

Brun F, Hernández I, Vergara J, Peralta G, Pérez-Lloréns J (2002) Assessing the toxicity of ammonium pulses to the survival and growth of Zostera noltii. Marine Ecology Progress Series 225: 177–187. https://doi.org/10.3354/meps225177

Cabaço S, Santos R, Duarte CM (2008) The impact of sediment burial and erosion on seagrasses: A review. Estuarine, Coastal and Shelf Science 79: 354–366. https://doi.org/10.1016/j.ecss.2008.04.021

Cambridge ML, Chiffings AW, Brittan C, Moore L, McComb AJ (1986) The loss of seagrass in Cockburn Sound, Western Australia. II. Possible causes of seagrass decline. Aquatic Botany 24: 269–285. https://doi.org/10.1016/0304-3770(86)90062-8

Capuzzo E, Stephens D, Silva T, Barry J, Forster RM (2015) Decrease in water clarity of the southern and central North Sea during the 20th century. Global Change Biology 21: 2206–2214. https://doi.org/10.1111/gcb.12854

Chen SN, Geyer WR, Sherwood CR, Ralston DK (2010) Sediment transport and deposition on a river-dominated tidal flat: An idealized model study. Journal of Geophysical Research: Oceans. https://doi.org/10.1029/2010jc006248

de Boer WF (2007) Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia 591: 5–24. https://doi.org/10.1007/s10750-007-0780-9

de los Santos CB, Krause-Jensen D, Alcoverro T, Marbà N, Duarte CM, van Katwijk MM, Pérez M, Romero J, Sánchez-Lizaso JL, Roca G, Jankowska E, Pérez-Lloréns JL, Fournier J, Montefalcone M, Pergent G, Ruiz JM, Cabaço S, Cook K, Wilkes RJ, Moy FE, Trayter GM-R, Arañó XS, de Jong DJ, Fernández-Torquemada Y, Auby I, Vergara JJ, Santos R (2019) Recent trend reversal for declining European seagrass meadows. Nature Communications 10: 3356. https://doi.org/10.1038/s41467-019-11340-4

Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW, Batiuk RA (1993) Assessing water quality with submersed aquatic vegetation: habitat requirements as barometers of Chesapeake Bay health. BioScience 43: 86–94. https://doi.org/10.2307/1311969

Dolch T, Buschbaum C, Reise K (2013) Persisting intertidal seagrass beds in the northern Wadden Sea since the 1930s. Journal of Sea Research 82: 134–141. https://doi.org/10.1016/j.seares.2012.04.007

Dronkers J (1986) Tidal asymmetry and estuarine morphology. Netherlands Journal of Sea Research 20: 117–131. https://doi.org/10.1016/0077-7579(86)90036-0

Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2: 1–8. https://doi.org/10.5194/bg-2-1-2005

Dupont N, Aksnes DL (2013) Centennial changes in water clarity of the Baltic Sea and the North Sea. Estuarine, Coastal and Shelf Science 131: 282–289. https://doi.org/10.1016/j.ecss.2013.08.010

Erftemeijer PLA, Robin Lewis RR (2006) Environmental impacts of dredging on seagrasses: A review. Marine Pollution Bulletin 52: 1553–1572. https://doi.org/10.1016/j.marpolbul.2006.09.006

European Parliament and Council (2000) Directive 2000/60/EC establishing a framework for Community action in the field of water policy. Brussels. https://eur-lex.europa.eu/eli/dir/2000/60/oj/eng

Feng X, Feng H (2021) On the role of anthropogenic activity and sea-level-rise in tidal distortion on the open coast of the Yellow Sea shelf. Journal of Geophysical Research Oceans 126: e2020JC016583. https://doi.org/10.1029/2020jc016583

Fettweis M, Riethmüller R, Verney R, Becker M, Backers J, Baeye M, Chapalain M, Claeys S, Claus J, Cox T, Deloffre J, Depreiter D, Druine F, Flöser G, Grünler S, Jourdin F, Lafite R, Nauw J, Nechad B, Röttgers R, Sottolichio A, Van Engeland T, Vanhaverbeke W, Vereecken H (2019) Uncertainties associated with in situ high-frequency long-term observations of suspended particulate matter concentration using optical and acoustic sensors. Progress in Oceanography 178: 102162. https://doi.org/10.1016/j.pocean.2019.102162

Firth BL, Craig PM, Drake DAR, Power M (2024) Impact of turbidity on the gill morphology and hypoxia tolerance of eastern sand darter (Ammocrypta pellucida). Journal of Fish Biology 104: 1888–1898. https://doi.org/10.1111/jfb.15679

Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5: 505–509. https://doi.org/10.1038/ngeo1477

Ganter B (2000) Seagrass (Zostera spp.) as food for Brent Geese (Branta bernicla): An overview. Helgoland Marine Research 54: 63–70. https://doi.org/10.1007/s101520050003

Gera A, Pages JF, Arthur R, Farina S, Roca G, Romero J, Alcoverro T (2014) The effect of a centenary storm on the long-lived seagrass Posidonia oceanica. Limnology and Oceanography 59: 1910–1918. https://doi.org/10.4319/lo.2014.59.6.1910

Grünler S, Sellhorn D (2018) Kalibrierung von Trübungsmessungen für Aussagen zur Schwebstoffkonzentration in den Ästuaren Weser und Elbe. Hamburg.

Hansen JCR, Reidenbach MA (2012) Wave and tidally driven flows in eelgrass beds and their effect on sediment suspension. Marine Ecology Progress Series 448: 271–288. https://doi.org/10.3354/meps09225

Harvey ET, Walve J, Andersson A, Karlson B, Kratzer S (2019) The effect of optical properties on secchi depth and implications for eutrophication management. Frontiers in Marine Science 5: 496. https://doi.org/10.3389/fmars.2018.00496

Hemminga MA, Duarte CM (2000) Seagras ecology. Cambridge.

Hernán G, Ortega MaJ, Gándara AM, Castejón-Silvo I, Terrados J, Tomàs F (2017) Future warmer seas: Increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species. Global Change Biology 23: 4530–4543. https://doi.org/10.1111/gcb.13768

Jacob B, Stanev EV (2021) Understanding the impact of bathymetric changes in the German Bight on Coastal hydrodynamics: one step toward realistic morphodynamic modeling. Frontiers in Marine Science 8: 640214. https://doi.org/10.3389/fmars.2021.640214

Jiang L, Gerkema T, Idier D, Slangen ABA, Soetaert K (2020) Effects of sea-level rise on tides and sediment dynamics in a Dutch tidal bay. Ocean Science 16: 307–321. https://doi.org/10.5194/os-16-307-2020

Kleyer M, Balke T, Minden V, Peppler-Lisbach C, Schoenmakers S, Spalke J, Timmermann H (2014) Mellum: A highly dynamic island, though not for plants. Wadden Sea Ecosytem 33: 29–44

Kostaschuk R, Best JL (2005) Response of sand dunes to variations in tidal flow: Fraser Estuary, Canada. Journal of Geophysical Research Atmospheres 110 (F4): F04S04. https://doi.org/10.1029/2004jf000176

Küfog GmbH & Steuwer J (2020) Eulitorale Seegrasbestände im niedersächsischen Wattenmeer 2019. Gesamtbestandserfassung und Bewertung nach EG-Wasserrahmenrichtlinie. Unpublished expert report commissioned by NLWKN.

La Nafie YA, De Los Santos CB, Brun FG, Van Katwijk MM, Bouma TJ (2012) Waves and high nutrient loads jointly decrease survival and separately affect morphological and biomechanical properties in the seagrass Zostera noltii. Limnology and Oceanography 57: 1664–1672. https://doi.org/10.4319/lo.2012.57.6.1664

Lee Z, Shang S, Hu C, Du K, Weidemann A, Hou W, Lin J, Lin G (2015) Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote Sensing of Environment 169: 139–149. https://doi.org/10.1016/j.rse.2015.08.002

Livsey DN, Downing-Kunz MA, Schoellhamer DH, Manning AJ (2020) Suspended sediment flux in the San Francisco Estuary: Part I—changes in the vertical distribution of suspended sediment and bias in estuarine sediment flux measurements. Estuaries and Coasts 43: 1956–1972. https://doi.org/10.1007/s12237-020-00734-z

Long MH, Rheuban JE, Berg P, Zieman JC (2012) A comparison and correction of light intensity loggers to photosynthetically active radiation sensors. Limnology and Oceanography Methods 10: 416–424. https://doi.org/10.4319/lom.2012.10.416

Massa SI, Arnaud-Haond S, Pearson GA, Serrão EA (2009) Temperature tolerance and survival of intertidal populations of the seagrass Zostera noltii (Hornemann) in Southern Europe (Ria Formosa, Portugal). Hydrobiologia 619: 195–201. https://doi.org/10.1007/s10750-008-9609-4

McGlathery KJ, Sundbaeck K, Anderson IC (2007) Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Marine Ecology Progress Series 348: 1–18. https://doi.org/10.3354/meps07132

Mtwana Nordlund L, Koch EW, Barbier EB, Creed JC (2016) Seagrass ecosystem services and their variability across genera and geographical regions. Plos One 11: e0163091. https://doi.org/10.1371/journal.pone.0163091

Nacken M, Reise K (2000) Effects of herbivorous birds on intertidal seagrass beds in the northern Wadden Sea. Helgoland Marine Research 54: 87–94. https://doi.org/10.1007/s101520050006

Omand MM, Steinberg DK, Stamieszkin K (2021) Cloud shadows drive vertical migrations of deep-dwelling marine life. Proceedings of the National Academy of Sciences 118: e2022977118. https://doi.org/10.1073/pnas.2022977118

Opdal AF, Lindemann C, Aksnes DL (2019) Centennial decline in North Sea water clarity causes strong delay in phytoplankton bloom timing. Global Change Biology 25: 3946–3953. https://doi.org/10.1111/gcb.14810

Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. BioScience 56: 987–996. https://doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2

Peralta G, Brun FG, Pérez-Lloréns JL, Bouma TJ (2006) Direct Effects of current velocity on the growth, morphometry and architecture of seagrasses: A case study on Zostera noltii. Marine Ecology Progress Series 373: 135–142. https://doi.org/10.3354/meps327135

Peralta G, Pérez-Lloréns JL, Hernández I, Vergara JJ (2002) Effects of light availability on growth, architecture and nutrient content of the seagrass Zostera noltii Hornem. Journal of Experimental Marine Biology and Ecology 269: 9–26. https://doi.org/10.1016/S0022-0981(01)00393-8

Pergent-Martinì C, Pasqualini V, Ferrat L, Pergent G, Fernandez C (2005) Seasonal dynamics of Zostera noltii Hornem. in two Mediterranean lagoons. Hydrobiologia 543: 233–243. https://doi.org/10.1007/s10750-004-7454-7

Philippart CJM, Ballesta-Artero I, Candy AS, Leeuwen SMv, Stocchi P, Elschot K, Puijenbroek MEBv (2020) Factors underlying the recovery potential of littoral seagrass in the Dutch Wadden Sea. Wageningen.

Ralston DK, Geyer WR, Traykovski P, Nidzieko NJ (2013) Effects of estuarine and fluvial processes on sediment transport over deltaic tidal flats. Continental Shelf Research 60 (Supplement): S40–S57. https://doi.org/10.1016/j.csr.2012.02.004

Reineck HE (1962) Schichtungsarten in Wattenböden. Journal of Plant Nutrition and Soil Science 99: 154–159. https://doi.org/10.1002/jpln.19620990210

Schanz A, Asmus H (2003) Impact of hydrodynamics on development and morphology of intertidal seagrasses in the Wadden Sea. Marine Ecology Progress Series 261: 123–134. https://doi.org/10.3354/meps261123

Schanz A, Polte P, Asmus H (2002) Cascading effects of hydrodynamics on an epiphyte–grazer system in intertidal seagrass beds of the Wadden Sea. Marine Biology 141: 287–297. https://doi.org/10.1007/s00227-002-0823-8

Schückel U, Beck M, Kröncke I (2013) Spatial variability in structural and functional aspects of macrofauna communities and their environmental parameters in the Jade Bay (Wadden Sea Lower Saxony, southern North Sea). Helgoland Marine Research 67: 121–136. https://doi.org/10.1007/s10152-012-0309-0

Scully ME, Friedrichs CT (2003) The Influence of asymmetries in overlying stratification on near-bed turbulence and sediment suspension in a partially mixed estuary. Ocean Dynamics 53: 208–219. https://doi.org/10.1007/s10236-003-0034-y

Scully ME, Friedrichs CT (2007) The importance of tidal and lateral asymmetries in stratification to residual circulation in partially mixed estuaries. Journal of Physical Oceanography 37: 1496–1511. https://doi.org/10.1175/jpo3071.1

Secchi PA (1865) Relazione delle esperienze fatte a bordo della pontificia pirocorvetta Imacolata Concezione per determinare la trasparenza del mare. Rome.

Shephard SA, McComb AJ, Bulthuis DA, Neverauskas V, Steffensen DA, West R (1989) Decline of seagrasses. Larkum AWD, McComb AJ, Shephard SA (eds) Biology of seagrasses: A treatise on the biology of seagrasses with special reference to the Australian region: 346–393. Amsterdam

Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: A bioregional model. Journal of Experimental Marine Biology and Ecology 35: 3–20. https://doi.org/10.1016/j.jembe.2007.06.012

Short FT, Wyllie-Echeverria S (1996) Natural and human-induced disturbance of seagrasses. Environmental Conservation 23: 17–27. https://doi.org/10.1017/S0376892900038212

Sommerfield CK, Wong KC (2011) Mechanisms of sediment flux and turbidity maintenance in the Delaware Estuary. Journal of Geophysical Research Atmospheres 116 (C1): C01005. https://doi.org/10.1029/2010jc006462

Sullivan B, Trevathan-Tackett S, Neuhauser S, Govers L (2018) Review: Host-pathogen dynamics of seagrass diseases under future global change. Marine Pollution Bulletin 134: 75–88. https://doi.org/10.1016/j.marpolbul.2017.09.030

Thewes D, Stanev EV, Zielinski O (2021) The North Sea light climate: Analysis of observations and numerical simulations. Journal of Geophysical Research Oceans 126: e2021JC017697. https://doi.org/10.1029/2021jc017697

Van Katwijk M, Vergeer L, Schmitz G, Roelofs J (1997) Ammonium toxicity in eelgrass Zostera marina. Marine Ecology Progress Series 157: 159–173. https://doi.org/10.3354/meps157159

Vermaat J, Agawin NS, Fortes M, Uri J, Duarte C, Marba N, Enríquez S, Van Vierssen W (1997) The capacity of seagrasses to survive increased turbidity and siltation: The significance of growth form and light use. AMBIO 26: 499–504

Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences 106: 12377–12381. https://doi.org/10.1073/pnas.0905620106

Wernand M (2010) On the history of the Secchi disc. Journal of the European Optical Society - Rapid Publications 5: 10013s. https://doi.org/10.2971/jeos.2010.10013s

Widdows J, Pope N, Brinsley MD, Asmus H, Asmus R (2008) Effects of seagrass beds (Zostera noltii and Z. marina) on near-bed hydrodynamics and sediment resuspension. Marine Ecology Progress Series 358: 125–136. https://doi.org/10.3354/meps07338

Zieman J, Wetzel R (1980) Productivity in seagrasses: Methods and rates. Phillips RC, McRoy CP (eds) Handbook of Seagrass Biology: An Ecosystem Perspective: 87–166. New York

Zoffoli ML, Gernez P, Oiry S, Godet L, Dalloyau S, Davies BFR, Barillé L (2022) Remote sensing in seagrass ecology: Coupled dynamics between migratory herbivorous birds and intertidal meadows observed by satellite during four decades. Remote Sensing in Ecology and Conservation 9: 420–433. https://doi.org/10.1002/rse2.319

Downloads

Published

2025-12-10

How to Cite

Storey, D. S., Prinz, M., Übel, U., Freund, H., & Thewes, D. (2025). Seagrass under stress - A measurement and testing design for the assessment of environmental factors in the intertidal zone of the Lower Saxony Wadden Sea. ERDKUNDE, 79(3/4), 313–326. https://doi.org/10.3112/erdkunde.2025.03.09

Issue

Section

Short Communication