Challenges for coastal protection in Mecklenburg-Western Pomerania for the 21st century

Authors

  • Ulrich Floth
  • Marcus Siewert
  • Lars Tiepolt

DOI:

https://doi.org/10.3112/erdkunde.2025.03.06

Keywords:

coastal protection, coastal erosion, coastal flooding, climate change, Mecklenburg-Western Pomerania, sea-level rise

Abstract

In 2020, the German Working Group on water issues of the Federal States and the Federal Government represented by the Federal Environment Ministry (LAWA) introduced the precautionary measure of 1.0 m for the expected sea level rise due to climate change for the next 100 years. As a result, the framework of tasks for the coastal protection in Mecklenburg-Western Pomerania and other coastal federal states changed significantly. The most relevant consequences are the increase in mean water levels and the associated expansion of permanently inundated zones. In addition, rising mean water levels are accompanied by an expected analogous increase in extreme water levels during storm surges and, therefore, a further extension of potentially flooded areas in these cases. Moreover, sea level rise or a change in meteorological and hydrodynamic conditions is expected to lead to profound changes in coastal morphology and its rate of development. Due to the intense use of widespread lowland areas, changes in mean and extreme water levels as well as coastal morphodynamics can be assumed to have a considerable impact on existing forms of land use. The associated number of potentially concerned inhabitants and the existing property values lead to a considerable rise in the potential for flood-related damages. Increasing requirements, especially with regard to design events, will force the state coastal protection in Mecklenburg-Western Pomerania to adapt to a new (natural and socio-economic) framework and to align with other spatially relevant interests. This is accompanied by an increased need for the state coastal protection administration for the most reliable long-term projections, advanced design approaches and efficient adaptation strategies in order to meet these challenges. The purpose of this paper is not a presentation of new scientific data, but to identify and explain foreseeable challenges and knowledge deficits for state coastal protection taking the perspective of the public administration based on experience, measurements, third party scientific studies and definitions by expert committees.

References

Bruun PM (1962) Sea-level rise as a cause of shore erosion. American Society of Civil Engineers Journal of the Waterways and Harbours Division 88: 117–130. https://doi.org/10.1061/JWHEAU.0000252

Bonaduce A, Staneva J, Beherens A, Bidlot J-R, Wilcke RAI (2019) Wave climate change in the North Sea and Baltic Sea. Journal of Marine Science and Engineering 7: 166. https://doi.org/10.3390/jmse7060166

Cooper JAG, Orrin HP (2004) Sea-level rise and shoreline retreat: Time to abandon the Bruun Rule. Global and Planetary Change 43: 157–171. https://doi.org/10.1016/j.gloplacha.2004.07.001

Dean RG (1991) Equilibrium beach profiles: Characteristics and applications. Journal of Coastal Research 7: 53–84.

Dean RG, Houston JR (2016) Determining shoreline response to sea level rise. Coastal Engineering 114: 1–8. https://doi.org/10.1016/j.coastaleng.2016.03.009

Dreier N, Schlamkow C, Fröhle P, Salecker D (2013) Changes of 21st century’s average and extreme wave conditions at the German Baltic Sea coast due to global climate change. Journal of Coastal Research 165: 1921–1926. https://doi.org/10.2112/SI65-325.1

Dreier N, Schlamkow C, Fröhle P, Salecker D, Xu Z (2015) Assessment of changes of extreme wave conditions at the German Baltic Sea coast on the basis of future climate change scenarios. Journal of Marine Science and Technology 23: 839–845. https://doi.org/10.6119/JMST-015-0609-3

Dreier N, Nehlsen E, Fröhle P, Rechid D, Bouwer LM, Pfeifer S (2021) Future changes in wave conditions at the German Baltic Sea coast based on a hybrid approach using an ensemble of regional climate change projections. Water 13: 167. https://doi.org/10.3390/w13020167

Fox-Kemper B, Hewitt HT, Xiao C, Aðalgeirsdóttir G, Drijfhout SS, Edwards TL, Golledge NR, Hemer M, Kopp RE, Krinner G, Mix A, Notz D, Nowicki S, Nurhati IS, Ruiz L, Sallée J B, Slangen ABA, Yu Y (2021) Ocean, Cryosphere and Sea Level Change. Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change: 1211-1362. Cambridge. https://doi.org/ 10.1017/9781009157896.011

Fröhle P (2012) To the effectiveness of coastal and flood protection structures under terms of changing climate conditions. Coastal Engineering Proceedings 33. https://10.9753/icce.v33.management.60

Groll N, Grabemann I, Hünicke B, Meese M (2017) Baltic Sea wave conditions under climate Change scenarios. Boreal Environment Research 22: 1–12.

Dronkers J, Gilbert JTE, Butler LW, Carey JJ, Campbell J, James E, McKenzie C, Misdorp R, Quin N, Ries KL, Schroder PC, Spradley JR, Titus JG, Vallianos L, von Dadelszen J (1990) Strategies for adaptation to sea level rise. report of the IPCC coastal management sub-group. Geneva. https://papers.risingsea.net/federal_reports/IPCC-1990-adaption-to-sea-level-rise.pdf

Kamphuis JW (1987) recession rate of glacial till bluffs. Journal of Waterway, Port, Coastal, and Ocean Engineering 113: 60–73. https://doi.org/10.1061/(ASCE)0733-950X(1987)113:1(60)

Kolp O (1955) Sturmflutgefährdung der deutschen Ostseeküste zwischen Trave und Swine. Seehydrographischer Dienst der DDR. Stralsund.

LAWA-AK (2020) Auswirkungen des Klimawandels auf die Wasserwirtschaft - Bestandsaufnahme, Handlungsoptionen und strategische Handlungsfelder. München. https://hdl.handle.net/20.500.11970/114397

Linham MM, Nicholls RJ (2010) Technologies for climate change adaption – Coastal erosion and flooding. Zhu X (ed) TNA Guidebook Series: 54–62 Roskilde.

Mangor K, Drønen NK, Kærgaard KH, Kristensen SE (2017) Shoreline management guidelines. Hørsholm.

Meadowcroft IC, Hall JW, Lee EM, Milheiro-Oliveira P (1999) Coastal cliff recession: Development and application of prediction methods. HR Wallingford Report SR549.

Ministerium für Klimaschutz, Landwirtschaft, ländliche Räume und Umwelt Mecklenburg-Vorpommern (2009) Regelwerk Küstenschutz Mecklenburg-Vorpommern, Grundlagen, Grundsätze Standortbestimmung und Ausblick. Schwerin. https://www.stalu-mv.de/mm/Themen/K%C3%BCstenschutz/Regelwerk-K%C3%BCstenschutz-Mecklenburg%E2%80%93Vorpommern/ (access: July 14 2025).

Ministerium für Klimaschutz, Landwirtschaft, ländliche Räume und Umwelt M Mecklenburg-Vorpommern (2022a) Regelwerk Küstenschutz Mecklenburg-Vorpommern, Hydrodynamische Eingangsparameter für den Entwurf, die Bemessung und die Sicherheitsüberprüfung von Küstenschutzanlagen in Mecklenburg-Vorpommern. Schwerin. https://www.stalu-mv.de/mm/Themen/K%C3%BCstenschutz/Regelwerk-K%C3%BCstenschutz-Mecklenburg%E2%80%93Vorpommern/ (access: July 14 2025).

Ministerium für Klimaschutz, Landwirtschaft, ländliche Räume und Umwelt Mecklenburg-Vorpommern (2022b) Regelwerk Küstenschutz Mecklenburg-Vorpommern, Referenzhochwasserstand und Bemessungshochwasserstand. Schwerin. https://www.stalu-mv.de/mm/Themen/K%C3%BCstenschutz/Regelwerk-K%C3%BCstenschutz-Mecklenburg%E2%80%93Vorpommern/ (access: July 14 2025).

Ministerium für Klimaschutz, Landwirtschaft, ländliche Räume und Umwelt Mecklenburg-Vorpommern (2022c) Küstenschutz in Mecklenburg-Vorpommern. 150 Jahre Sturmflut 1872. Schwerin. https://www.regierung-mv.de/Landesregierung/lm/Umwelt/Wasser/Kuestenschutz/?id=27134&processor=veroeff (access: July 14 2025).

Ministerium für Wirtschaft, Infrastruktur, Tourismus und Arbeit Mecklenburg-Vorpommern (2016) Landesraumentwicklungsprogramm Mecklenburg-Vorpommern. Schwerin. https://www.regierung-mv.de/Landesregierung/wm/Raumordnung/Landesraumentwicklungsprogramm/aktuelles-Programm/ (access: July 14 2025).

Newe J (2017) Sicherheitsüberprüfung von Landesküstenschutzdünen in Mecklenburg-Vorpommern. Wolfenbüttel.

Oppenheimer M, Glavovic BC, Hinkel J, van de Wal R, Magnan AK, Abd-Elgawad A, Cai R, Cifuentes-Jara M, DeConto RM, Ghosh T, Hay J, Isla F, Marzeion B, Meyssignac B, Sebesvari Z (2019) Sea level rise and implications for low-lying islands, coasts and communities. Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds) IPCC special report on the ocean and cryosphere in a changing climate: 321–445. https://doi.org/10.1017/9781009157964.006

Rosati J, Dean RG, Walton T (2013) The modified Bruun rule extended for landward transport. Marine Geology 340: 71–81. https://doi.org/10.1016/j.margeo.2013.04.018

Schwarzer K, Ricklefs K, Lohrberg A, Valerius J (2019) Die geologische Entwicklung von Nord- und Ostsee. Die Küste 87: 343–376. https://doi.org/10.18171/1.087114

SPD Landesverband Mecklenburg-Vorpommern & DIE LINKE. Landesverband Mecklenburg-Vorpommern (2021) Aufbruch 2030, Koalitionsvereinbarung 2021-2026 über die Bildung einer Koalitionsregierung für die 8. Legislaturperiode des Landtags Mecklenburg-Vorpommern. Schwerin. https://www.regierung-mv.de/static/Regierungsportal/Ministerpr%C3%A4sidentin%20und%20Staatskanzlei/Dateien/pdf-Dokumente/211215%20Regierungserkl%C3%A4rung%20Presseexemplare.pdf (access: July 14 2025).

Sunamura T (1992) The geomorphology of rocky coasts. Chichester.

The BACC II Author Team (2015) Second assessment of climate change for the Baltic Sea basin. Geesthacht.

Trenhaile AS (2000) Modelling the development of wave-cut shore platforms. Marine Geology 166: 163–178. https://doi.org/10.1016/S0025-3227(00)00013-X

Walkden M, Hall J (2005) A predictive mesoscale model of the erosion and profile development of soft rock shores. Coastal Engineering 52: 535–563. https://doi.org/10.1016/j.coastaleng.2005.02.005

Walkden M, Hall J (2011) A Mesoscale predictive model of the evolution and management of a soft-rock coast. Journal of Coastal Research 27: 529–543. https://doi.org/10.2307/29783273

Weichbrodt F, Zarncke T, Sommermeier K, Klee A, Schlamkow C (2013) Grundlagen für Entwurf, Bemessung und Sicherheitsüberprüfung von Küstenschutzanlagen in Mecklenburg-Vorpommern. Die Küste 80: 143-162. Hamburg. https://hdl.handle.net/20.500.11970/105225

Weiss D (1992) Schutz der Ostseeküste von Mecklenburg-Vorpommern. Deutscher Verband für Wasserwirtschaft und Kulturbau e.V. Kramer J, Rohde H (eds) Historischer Küstenschutz: 535–567 Stuttgart.

Downloads

Published

2025-12-10

How to Cite

Floth, U., Siewert, M., & Tiepolt, L. (2025). Challenges for coastal protection in Mecklenburg-Western Pomerania for the 21st century. ERDKUNDE, 79(3/4), 235–246. https://doi.org/10.3112/erdkunde.2025.03.06

Issue

Section

Research Article