Evaluating remote sensing data as a tool to minimize spatial autocorrelation in in-situ vegetation sampling
DOI:
https://doi.org/10.3112/erdkunde.2025.01.02Keywords:
Altmuehl Valley, grasslands, monitoring, nature conservation, NDVI, Sentinel-2, spectral reflectanceAbstract
The distinction between geographical patterns caused by underlying environmental factors and inherent spatial autocorrelation is a general challenge for field research. The quality and validity of phytogeographical studies is strongly dependent on disentangling spatial and ecological proximity. This is also crucial for applied studies in nature conservation. One key assumption for many statistical analyses is the independence of observations. In this study we first identify the range of spatial autocorrelation in managed grasslands based on field data. Along a gradient in a valley bottom, we set up five 60 m x 60 m squares, segmented in 36 10 m x 10 m square grid cells. In 20 of the 10 m x 10 m grid cells, we sampled vegetation along a 10 m line with a buffer of one meter resulting in a 20 m² sampling plot. In a second step, we matched Sentinel-2 images for the same locations and calculated the normalized difference vegetation index NDVI and the normalized difference red edge index NDRE. For both, field data and satellite data, Mantel correlograms for floristic distances and spectral indices were used to analyse the spatial autocorrelation. We found the vegetation in the studied grasslands to be spatially correlated up to 25 m. At none of the studied sites the positive spatial autocorrelation reaches beyond. The spatial autocorrelation of spectral indices correlates well with the correlations observed field data. The correlograms of NDVI resembled the ones of the field data slightly better compared to the correlograms of NDRE and RGB. We conclude that employing remote sensing to assess the role of spatial autocorrelation for grasslands is a valid approach. We show that it reflects similar patterns as the field data. The spatial resolution of freely available satellite data proved sufficient to test for the minimum distance between vegetation samples to avoid spatial autocorrelation.
References
Ahmed M, Else B, Eklundh L, Ardö J, Seaquist J (2017) Dynamic response of NDVI to soil moisture variations during different hydrological regimes in the Sahel region. International Journal of Remote Sensing 38: 5408–5429. https://doi.org/10.1080/01431161.2017.1339920
Ali I, Cawkwell F, Dwyer E, Barrett B, Green S (2016) Satellite remote sensing of grasslands: From observation to management. Journal of Plant Ecology 9: 649–671. https://doi.org/10.1093/jpe/rtw005
Almeida-Neto M, Lewinsohn TM (2004) Small-scale spatial autocorrelation and the interpretation of relationships between phenological parameters. Journal of Vegetation Science 15: 561–568. https://doi.org/10.1111/j.1654-1103.2004.tb02295.x
Barnes EM, Clarke TR, Richards SE, Colaizzi PD, Haberland J, Kostrzewski M, Waller P, Choi C, Riley E, Thompson T, Lascano RJ, Li H, Moran MS (2000) Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA 1619: 6. Madison.
Bartha S, Collins SL, Glenn SM, Kertész M (1995) Fine-scale spatial organization of tallgrass prairie Vegetation along a topographic gradient. Folia Geobotanica & Phytotaxonomica 30: 169–84.
Beierkuhnlein C (2007) Biogeographie - Die räumliche Organisation des Lebens in einer sich verändernden Welt. Stuttgart.
Bestelmeyer BT, Goolsby DP, Archer SR (2011) Spatial perspectives in state-and-transition models: A missing link to land management? Journal of Applied Ecology 48: 746–757. https://doi.org/10.1111/j.1365-2664.2011.01982.x
Bini LM, Diniz Filho JA, Bonfim F, Bastos RP (2000) Local and regional species richness relationships in viperid snake assemblages from South America: Unsaturated patterns at three different spatial scales. Copeia 2000: 799–805. https://doi.org/10.1643/0045-8511(2000)000[0799:LARSRR]2.0.CO;2
Biró L, Kozma-Bognár V, Berke J (2024) Comparison of RGB indices used for vegetation studies based on structured similarity index (SSIM) Journal of Plant Science and Phytopathology 8: 007–012. https://doi.org/10.29328/journal.jpsp.1001124
Boiarskii B, Hasegawa H (2019) Comparison of NDVI and NDRE indices to detect differences in vegetation and chlorophyll content. Journal of Mechanics of Continua and Mathematical Sciences 4: 20–29. https://doi.org/10.26782/jmcms.spl.4/2019.11.00003
Bolker BM (2003) Combining endogenous and exogenous spatial variability in analytical population models. Theoretical Population Biology 64: 255–270. https://doi.org/10.1016/S0040-5809(03)00090-X
Braun-Blanquet J (1965) Plant sociology: The study of plant communities. London.
Caballero I, Olano JM, Loidi J, Escudero A (2008) A model for small-scale seed bank and standing vegetation connection along time. Oikos 117: 1788–1795. https://doi.org/10.1111/j.1600-0706.2008.17138.x
Chen T, De Jeu RAM, Liu YY, Van Der Werf GR, Dolman AJ (2014) Using satellite based soil moisture to quantify the water driven variability in NDVI: A case study over mainland Australia. Remote Sensing of Environment 140: 330–338. https://doi.org/10.1016/j.rse.2013.08.022
Chiarucci A (2007) To sample or not to sample? That is the question ... for the vegetation scientist. Folia Geobotanica 42: 209–216. https://doi.org/10.1007/BF02893887
Coops NC, Kearney SP, Bolton DK, Radeloff VC (2018) Remotely-sensed productivity clusters capture global biodiversity patterns. Scientific reports 8: 16261. https://doi.org/10.1038/s41598-018-34162-8
Copernicus Land Cover Service (2020) High resolution layer grassland 2018. https://doi.org/10.2909/60639d5b-9164-4135-ae93-fb4132bb6d83
Copernicus (ed) (2021) Europe’s eyes on earth, looking at our planet and its environment. https://www.copernicus.eu/en. [Accessed 20 November 2024].
Daget PH, Poissonet J (1971) A method of phytological analysis of grasslands: Application criteria (French) Une méthode d’analyse phytologique des prairies: Critères d’application. Annales Agronomiques 22: 5–41.
Dale MR, Fortin MJ (2014) Spatial analysis: A guide for ecologists. Cambridge.
Dawson TP, Curran PJ (1998) Technical note. A new technique for interpolating the reflectance red edge position. International Journal of Remote Sensing 19: 2133–2139. https://doi.org/10.1080/014311698214910
Deák B, Valkó O, Török P, Kelemen A, Miglécz T, Szabó S, Szabó G, Tóthmérész B (2015) Micro-topographic heterogeneity increases plant diversity in old stages of restored grasslands. Basic and Applied Ecology 16: 291–299. https://doi.org/10.1016/j.baae.2015.02.008
Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Global ecology and Biogeography 12: 53–64. https://doi.org/10.1046/j.1466-822X.2003.00322.x
Dormann CF (2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecology and Biogeography 16: 129–138. https://doi.org/10.1111/j.1466-8238.2006.00279.x
Dormann CF, Mcpherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30: 609–628. https://doi.org/10.1111/j.2007.0906-7590.05171.x
Dray S, Pélissier R, Couteron P, Fortin MJ, Legendre P, Peres-Neto PR, Bellier E, Bivand R, Blanchet FG, De Cáceres M, Dufour AB, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, Wagner HH (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs 82: 257–275. https://doi.org/10.1890/11-1183.1
Ellenberg D, Mueller-Dombois D (1974) Aims and methods of vegetation ecology. New York.
Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen. In ökologischer, dynamischer und historischer Sicht. Stuttgart.
Fortin MJ, Dale MR (2009) Spatial autocorrelation in ecological studies: A legacy of solutions and myths. Geographical Analysis 41: 392–397. https://doi.org/10.1111/j.1538-4632.2009.00766.x
Frantz D, Stellmes M, Röder A, Udelhoven T, Mader S, Hill J (2016) Improving the spatial resolution of land surface phenology by fusing medium-and coarse-resolution inputs. IEEE Transactions on Geoscience and Remote Sensing 54: 4153–4164. https://doi.org./10.1109/TGRS.2016.2537929
Frantz D (2019) FORCE - Landsat+ Sentinel-2 analysis ready data and beyond. Remote Sensing 11: 1124. https://doi.org/10.3390/rs11091124
Gallardo-Cruz JA, Meave JA, Pérez-García EA, Hernández-Stefanoni JL (2010) Spatial structure of plant communities in a complex tropical landscape: implications for β-diversity. Community Ecology 11: 202–210. https://doi.org/10.1556/ComEc.11.2010.2.8
Gazol A, Tamme R, Takkis K, Kasari L, Saar L, Helm A, Pärtel M (2012) Landscape- and small-scale determinants of grassland species diversity: Direct and indirect influences. Ecography 35: 944–951. https://doi.org/10.1111/j.1600-0587.2012.07627.x
Goslee SC (2006) Behavior of vegetation sampling methods in the presence of spatial autocorrelation. Plant Ecology 187: 203–212. https://doi.org/0.1007/s11258-005-3495-x
Gould W (2000) Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecological applications 10: 1861–1870. https://doi.org/10.1890/1051-0761(2000)010[1861:RSOVPS]2.0.CO;2
Guillot G, Leblois R, Coulon A, Frantz AC (2009) Statistical methods in spatial genetics. Molecular ecology 18: 4734–4756. https://doi.org/10.1111/j.1365-294X.2009.04410.x
Haining R (1990) Spatial data analysis in the social and environmental sciences. Cambridge.
He Ks, Zhang J, Zhang Q (2009) Linking variability in species composition and MODIS NDVI based on beta diversity measurements. Acta Oecologica 35: 14–21. https://doi.org/10.1016/j.actao.2008.07.006
Henebry GM (1993) Detecting change in grasslands using measures of spatial dependence with Landsat TM data. Remote sensing of environment 46: 223–234. https://doi.org/10.1016/0034-4257(93)90097-H
Herben T, During HJ, Krahulec F (1995) Spatiotemporal dynamics in mountain grasslands: Species autocorrelations in space and time. Folia Geobotanica 30: 185–196. https://doi.org/10.1007/BF02812097
Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecological monographs 54: 187–211. https://doi.org/10.2307/1942661
Jetz W, Rahbek C (2001) Geometric constraints explain much of the species richness pattern in African birds. Proceedings of the National Academy of Sciences 98: 5661–5666. https://doi.org/10.1073/pnas.091100998
Jorge J, Vallbé M, Soler JA (2019) Detection of irrigation inhomogeneities in an olive grove using the NDRE vegetation index obtained from UAV images. European Journal of Remote Sensing 52: 169–177. https://doi.org/10.1080/22797254.2019.1572459
Kennedy RE, Townsend PA, Gross JE, Cohen WB, Bolstad P, Wang YQ, Adams P (2009) Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote sensing of environment 113: 1382–1396. https://doi.org/10.1016/j.rse.2008.07.018
King RS, Richardson CJ, Urban DL, Romanowicz EA (2004) Spatial dependency of vegetation–environment linkages in an anthropogenically influenced wetland ecosystem. Ecosystems 7: 75–97. https://doi.org/10.1007/s10021-003-0210-4
Kissling WD, Carl G (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography 17: 59–71. https://doi.org/10.1111/j.1466-8238.2007.00334.x
Kollmar P, Schneider C, Römermann C, Briemle G, Neff R, Schreiber KF, Poschlod P (2010) Vegetationskundliche Langzeit-Untersuchungen. Oppermann R, Blew J, Haack S, Hötker H, Poschlod P (eds) Gemeinsame Agrarpolitik (GAP) und Biodiversität. Naturschutz und Biologische Vielfalt 100: 207–281. Bonn-Bad Godesberg.
Lájer K (2007) Statistical tests as inappropriate tools for data analysis performed on non-random samples of plant communities. Folia Geobotanica 42: 115–122. https://doi.org/10.1007/BF02893878
Legendre P (1993) Spatial autocorrelation: Trouble or new paradigm? Ecology 74: 1659–1673. https://doi.org/10.2307/1939924
Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Vegetatio 80: 107–138. https://doi.org/10.1007/BF00048036
Legendre P, Fortin MJ (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular Ecology Resources 10: 831–844. https://doi.org/10.1111/j.1755-0998.2010.02866.x
Legendre P, Fortin MJ, Borcard D (2015) Should the Mantel test be used in spatial analysis? Methods in Ecology and Evolution 6: 1239–1247. https://doi.org/10.1111/2041-210X.12425
Legendre P, Legendre L (1998) Numerical ecology. Amsterdam.
Levin SA (1992). The problem of pattern and scale in ecology: The Robert H. MacArthur award lecture. Ecology 73: 1943–1967. https://doi.org/10.2307/1941447
Lfu (Bayerisches Landesamt Für Umwelt). Abgrenzungen von Gebieten. https://www.lfu.bayern.de/natur/natura2000_abgrenzungen/index.htm
Lfu (Bayerisches Landesamt für Umwelt) (ed) (2021a) Förderprogramme des Naturschutzes: Landschaftspflege, Vertragsnaturschutz. https://www.lfu.bayern.de/natur/foerderprogramme_naturschutz/index.htm. [Accessed 20 November 2024]
Lfu (Bayerisches Landesamt für Umwelt) (ed) (2021b) Übersichtsbodenkarte von Bayern 1:25.000. https://www.lfu.bayern.de/boden/karten_daten/uebk25/index.htm [Accessed 20 November 2024]
Lfu (Bayerisches Landesamt für Umwelt) (ed) (n.d.) Geometriedaten zu den bayerischen NATURA 2000-Gebieten. https://www.lfu.bayern.de/umweltdaten/geodatendienste/pretty_downloaddienst.htm?dld=natura2000. [Accessed 20 November 2024]
Ludwig A, Doktor D, Feilhauer H (2024) Is spectral pixel-to-pixel variation a reliable indicator of grassland biodiversity? A systematic assessment of the spectral variation hypothesis using spatial simulation experiments. Remote Sensing of Environment 302: 113988. https://doi.org/10.1016/j.rse.2023.113988
MacArthur RH (1972) Geographical ecology: Patterns in the distribution of species. New York.
Meirmans PG (2012) The trouble with isolation by distance. Molecular ecology 21: 2839–2846. https://doi.org/10.1111/j.1365-294X.2012.05578.x
Meyers LM, Dekeyser ES, Norland JE (2014) Differences in spatial autocorrelation (SA c), plant species richness and diversity, and plant community composition in grazed and ungrazed grasslands along a moisture gradient, North Dakota, USA. Applied Vegetation Science 17: 53–62. https://doi.org/10.1111/avsc.12040
Moriondo M, Maselli F, Bindi M (2007) A simple model of regional wheat yield based on NDVI data. European Journal of Agronomy 26: 266–274. https://doi.org/10.1016/j.eja.2006.10.007
Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O’hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista H, Fitzjohn R, Friendly M, Furneaux B, Hannigan G, Hill M, Lahti L, Mcglinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak C, Weedon J (2020) vegan: Community ecology package. R package version 2.5-7.
Palmer MW, Earls PG, Hoagland BW, White PS, Wohlgemuth T (2002) Quantitative tools for perfecting species lists. Environmetrics: The official journal of the International Environmetrics Society 13: 121–137. https://doi.org/10.1002/env.516
Pettorelli N, Nagendra H, Rocchini D, Rowcliffe M, Williams R, Ahumada J, De Angelo C, Atzberger C, Boyd D, Buchanan G, Chauvenet A, Disney M, Duncan C, Fatoyinbo T, Fernandez N, Haklay M, He K, Horning N, Kelly N, De Klerk H, Liu X, Merchant N, Paruelo J, Roy H, Roy S, Ryan S, Sollmann R, Swenson J, Wegmann M (2017) Remote sensing in ecology and conservation: Three years on. Remote Sensing in Ecology and Conservation 3: 53–56. https://doi.org/10.1002/rse2.53
Pinar A, Curran PJ (1996) Technical note grass chlorophyll and the reflectance red edge. International Journal of Remote Sensing 17: 351–357. https://doi.org/10.1080/01431169608949010
Piñeiro G, Oesterheld M, Paruelo JM (2006) Seasonal variation in aboveground production and radiation-use efficiency of temperate rangelands estimated through remote sensing. Ecosystems 9: 357–373. https://doi.org/10.1007/s10021-005-0013-x
Podani J, Csontos P (2006) Quadrat size dependence, spatial autocorrelation and the classification of community data. Community Ecology 7: 117–127. https://doi.org/10.1556/comec.7.2006.1.12
Pouget C, Pottier J, Jabot F (2021) Fine-scale functional metacommunity dynamics: Analysing the role of disturbance-driven environmental variability in grasslands. Journal of Vegetation Science 32: e13068. https://doi.org/10.1111/jvs.13068
R Core Team 2020 R: A language and environment for statistical computing, version 4.0.3. R Foundation for Statistical Computing, Vienna, Austria.
Recuero L, Litago J, Pinzón JE, Huesca M, Moyano MC, Palacios-Orueta A (2019) Mapping periodic patterns of global vegetation based on spectral analysis of NDVI time series. Remote Sensing 11: 2497. https://doi.org/10.3390/rs11212497
Reinermann S, Asam S, Kuenzer C (2020) Remote sensing of grassland production and management - a review. Remote Sensing 12: 1949. https://doi.org/10.3390/rs12121949
Rocchini D, Balkenhol N, Carter GA, Foody GM, Gillespie TW, He Ks, Kark S, Levin N, Lucas K, Luoto M, Nagendra H, Oldeland J, Ricotta C, Southworth J, Neteler M (2010) Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecological Informatics 5: 318–329. https://doi.org/10.1016/j.ecoinf.2010.06.001
Rocchini D, Salvatori N, Beierkuhnlein C, Chiarucci A, De Boissieu F, Förster M, Garzon-Lopez C, Gillespie T, Hauffe HC, He KS, Kleinschmit B, Lenoir J, Malavasi M, Moudrý V, Nagendra H, Payne D, Šímová P, Torresani M, Wegmann M, Féret JB (2021) From local spectral species to global spectral communities: A benchmark for ecosystem diversity estimate by remote sensing. Ecological Informatics 61: 101195. https://doi.org/10.1016/j.ecoinf.2020.101195
Rocchini D, Torresani M, Beierkuhnlein C, Feoli E, Foody GM, Lenoir J, Malavasi M, Moudrý V, Šímová P, Ricotta C (2022) Double down on remote sensing for biodiversity estimation: A biological mindset. Community Ecology 23: 267–276. https://doi.org/10.1007/s42974-022-00113-7
Roe CM, Parker GC, Korsten AC, Lister CJ, Weatherall SB, Lawrence Lodge RH, Bastow Wilson J (2012) Small-scale spatial autocorrelation in plant communities: The effects of spatial grain and measure of abundance, with an improved sampling scheme. Journal of Vegetation Science 23: 471–482. https://doi.org/10.1111/j.1654-1103.2011.01375.x
Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. NASA Special Publications 351: 309.
Schaffers AP, Sýkora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: A comparison with field measurements. Journal of Vegetation Science 11: 225–244. https://doi.org/10.2307/3236802
Schweiger AH, Irl SDH, Steinbauer MJ, Dengler J, Beierkuhnlein C (2016) Optimizing sampling approaches along ecological gradients. Methods in Ecology and Evolution 7: 463–471. https://doi.org/10.1111/2041-210X.12495
Singh JS, Roy PS, Murthy MSR, Jha CS (2010) Application of landscape ecology and remote sensing for assessment, monitoring and conservation of biodiversity. Journal of the Indian Society of Remote Sensing 38: 365–385. https://doi.org/10.1007/s12524-010-0033-7
Shen M, Chen J, Zhu X, Tang Y (2009) Yellow flowers can decrease NDVI and EVI values: Evidence from a field experiment in an alpine meadow. Canadian Journal of Remote Sensing 35: 99–106. https://doi.org/10.5589/m09-003
Shoemaker LG, Sullivan LL, Donohue I, Cabral JS, Williams RJ, Mayfield MM, Chase JM, Chu C, Harpole WS, Huth A, HilleRisLambers J, James ARM, Kraft NJB, May F, Muthukrishnan R, Satterlee S, Taubert F, Wang X, Wiegand T, Yang Q, Abbott KC (2020) Integrating the underlying structure of stochasticity into community ecology. Ecology 101: e02922. https://doi.org/10.1002/ecy.2922
Sokal RR, Oden NR (1978) Spatial autocorrelation in biology: 1. Methodology. Biological Journal of the Linnean Society 10: 199–228. https://doi.org/10.1111/j.1095-8312.1978.tb00013.x
Sturm P, Zehm A, Baumbach H, Von Brackel W, Verbücheln G, Stock M, Zimmermann F (2018) Grünlandtypen: Erkennen - Nutzen - Schützen. Wiebelsheim.
Tobler W (1970) A computer movie simulating urban growth in the Detroit region. Economic Geography 46: 234–240. https://doi.org/10.2307/143141
Ustin SL, Middleton EM (2021) Current and near-term advances in Earth observation for ecological applications. Ecological Processes 10: 1–57. https://doi.org/10.1186/s13717-020-00255-4
Wagner HH, Fortin MJ (2005) Spatial analysis of landscapes: concepts and statistics. Ecology 86: 1975–1987. https://doi.org/10.1890/04-0914
Wesche K, Krause B, Culmsee H, Leuschner C (2012) Fifty years of change in Central European grassland vegetation: Large losses in species richness and animal-pollinated plants. Biological Conservation 150: 76–85. https://doi.org/10.1016/j.biocon.2012.02.015
Wildi O (2017) Data analysis in vegetation ecology. Cabi.
Willis KS (2015) Remote sensing change detection for ecological monitoring in United States protected areas. Biological Conservation 182: 233–242. https://doi.org/10.1016/j.biocon.2014.12.006
Zhou Z, Sun OJ, Luo Z, Jin H, Chen Q, Han X (2008) Variation in small-scale spatial heterogeneity of soil properties and vegetation with different land use in semiarid grassland ecosystem. Plant and Soil 310: 103–112. https://doi.org/10.1007/s11104-008-9633-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Esther Baumann, Carl Beierkuhnlein, Anna Preitauer, Katrin Schmid, Michael Rudner

This work is licensed under a Creative Commons Attribution 4.0 International License.