Evaluating urban biodiversity: Effectiveness of citizen science driven species distribution models in urban ecosystems

A case study in the Ruhr Metropolis, Germany

Authors

DOI:

https://doi.org/10.3112/erdkunde.2024.03.03

Keywords:

avian biodiversity, species distribution models, citizen science, urban ecology, Ruhr Area, animal geography

Abstract

Citizen science (CS) and remote sensing (RS) approaches have become more reliable, thus providing higher resolution and generating a large amount of environmental data. When considering urban environments, where fragmented and highly diverse landscapes are predominant, the combination of citizen science data and remote sensing techniques with species distribution models (SDM) can play a vital role in comprehensively investigating and evaluating urban biodiversity. However, citizen science derived species distribution models for multiple avian species in dense and fragmented urban areas are rarely used. The study aims (I) to elaborate, whether CS driven SDMs can be effectively used in spatially complex urban environments; (II) to identify biodiversity hotspots and prioritize areas for nature conservation and (III) to examine, if existing protective areas correspond to species’ hotspots. Therefore, Citizen science-based datasets of 26 breeding bird species over three years were obtained for this analysis in Germany’s Ruhr Metropolis. Quality assurance, data thinning, and pseudo-absence simulations were performed. Spatial data from the ecosystem LiDAR project GEDI (Global Ecosystem Dynamics Investigation), climate data from the German Weather Service, and land use information from Copernicus were used as environmental predictors. Eleven different species distri-bution models (SDMs) were trained on species subselection by using Biomod2 for preliminary analysis. Overall model performance was evaluated via several metrics, including TSS (true skill statistics) and ROC (receiver operating characteristic). Finally, four species distribution models were used for ensemble modelling. Subsequently, a species richness analysis was performed with the aim of identifying spots with high avian biodiversity. Overall, the CS-derived SDMs performed well, with high predictive power for all of the investigated species. Within the Ruhr Metropolis, approximately 6% (250 km²) of the terrain was identified as being highly suitable for avian diversity, inhabiting at least 17 out of 26 species. Predominantly within the core urban areas, high species richness was predicted on preserved brownfields and revitalized mine sites, as well as in the remnants of formerly demarcated regional greenbelts. Additionally, regions outside of the core area, which are part of the overarching biotope network framework, proved to have high species richness capabilities for avian biodiversity. These findings aid in optimizing urban development concepts and (sub)urban green space management with respect to urban biodiversity conservation. Following the implications of the recently established Regional Biodiversity Strategy in the Ruhr Metropolis, this analysis demonstrates the importance of networked green spaces, their preservation and the need to close existing network gaps within the Ruhr Metropolis.

References

Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38: 541–545. https://doi.org/10.1111/ecog.01132

Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

Angelo H (2019) The greening imaginary: Urbanized nature in Germany’s Ruhr region. Theory and Society 48: 645–669. https://doi.org/10.1007/s11186-019-09361-5

Angold PG, Sadler JP, Hill MO, Pullin A, Rushton S, Austin K, Small E, Wood B, Wadsworth R, Sanderson R, Thompson K (2006) Biodiversity in urban habitat patches. Science of The Total Environment 360: 196–204. https://doi.org/10.1016/j.scitotenv.2005.08.035

Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. Journal of Biogeography 33: 1677–1688. https://doi.org/10.1111/j.1365-2699.2006.01584.x

Aronson MFJ, Nilon CH, Lepczyk CA, Parker TS, Warren PS, Cilliers SS, Goddard MA, Hahs AK, Herzog C, Katti M, La Sorte FA, Williams NSG, Zipperer W (2016) Hierarchical filters determine community assembly of urban species pools. Ecology 97: 2952–2963. https://doi.org/10.1002/ecy.1535

Baker DJ, Maclean IMD, Gaston KJ (2024) Effective strategies for correcting spatial sampling bias in species distribution models without independent test data. Diversity and Distributions 30. https://doi.org/10.1111/ddi.13802

Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3: 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x

Bauer H-G, Bezzel E, Fiedler W (2005) Das Kompendium der Vögel Mitteleuropas. Alles über Biologie, Gefährdung und Schutz. Wiebelsheim.

Bebber D (1999) Spatial autocorrelations. Trends in Ecology & Evolution 14: 196. https://doi.org/10.1016/S0169-5347(99)01607-9

Blair RB (1996) Land Use and Avian Species Diversity Along an Urban Gradient. Ecological Applications 6: 506–519. https://doi.org/10.2307/2269387

Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FK (2002) Evaluating resource selection functions 157: 281–300. https://doi.org/10.1016/S0304-3800(02)00200-4

Breiman L, Friedmann JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Boca Raton.

Breiman L (2001) Random forests. Machine Learning 45: 5–32. https://doi.org/10.1023/A:1010933404324

Brun P, Thuiller W, Chauvier Y, Pellissier L, Wüest RO, Wang Z, Zimmermann NE (2020) Model complexity affects species distribution projections under climate change. Journal of Biogeography 47: 130–142. https://doi.org/10.1111/jbi.13734

Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution 18: 119–125. https://doi.org/10.1016/S0169-5347(02)00045-9

Busby JR (1991) Bioclim, a bioclimatic analysis and prediction system. Margules CR, Austin MP (eds) Nature conservation: Cost effective biological surveys and data analysis: 64–68. Canberra.

Cai Z, La Sorte FA, Chen Y, Wu J (2023) The surface urban heat island effect decreases bird diversity in Chinese cities. The Science of the total environment 902: 166200. https://doi.org/10.1016/j.scitotenv.2023.166200

Carroll KA, Pidgeon AM, Elsen PR, Farwell LS, Gudex-Cross D, Zuckerberg B, Radeloff VC (2023) Mapping multiscale breeding bird species distributions across the United States and evaluating their conservation applications. Ecological applications: a publication of the Ecological Society of America: e2934. https://doi.org/10.1002/eap.2934

Caruana R, Niculescu-Mizil A, Crew G, Ksikes A (2004) Ensemble selection from libraries of models. Brodley C (ed) Design Automation Conference: 18. Proceedings 2004. New York, N.Y., Piscataway, N.J. https://doi.org/10.1145/1015330.1015432

Cavender-Bares J, Schneider FD, Santos MJ, Armstrong A, Carnaval A, Dahlin KM, Fatoyinbo L, Hurtt GC, Schimel D, Townsend PA, Ustin SL, Wang Z, Wilson AM (2022) Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nature Ecology & Evolution 6: 506–519. https://doi.org/10.1038/s41559-022-01702-5

Chen T, Guestrin C (2016) XGBoost. Krishnapuram B, Shah M, Smola A, Aggarwal C, Shen D, Rastogi R (eds) KDD ‘16: 785–794. New York. https://doi.org/10.1145/2939672.2939785

Ciach M, Fröhlich A (2017) Habitat type, food resources, noise and light pollution explain the species composition, abundance and stability of a winter bird assemblage in an urban environment. Urban Ecosystems 20: 547–559. https://doi.org/10.1007/s11252-016-0613-6

Coudun C, Gégout J-C (2006) The derivation of species response curves with Gaussian logistic regression is sensitive to sampling intensity and curve characteristics. Ecological Modelling 199: 164–175. https://doi.org/10.1016/j.ecolmodel.2006.05.024

Dachverband Deutscher Avifaunisten (2018) Verbreitung der Beobachter:innen. https://www.ornitho.de/index.php?m_id=1119&item=14 (date: 04.03.2024).

Dearborn DC, Kark S (2010) Motivations for conserving urban biodiversity. Conservation Biology 24: 432–440. https://doi.org/10.1111/j.1523-1739.2009.01328.x

Donnelly R, Marzluff JM (2006) Relative importance of habitat quantity, structure, and spatial pattern to birds in urbanizing environments. Urban Ecosystems 9: 99–117. https://doi.org/10.1007/s11252-006-7904-2

Dubayah R, Hofton M, Blair J, Armston J, Tang H, Luthcke S (2021a) GEDI L2A Elevation and Height Metrics Data Global Footprint Level V002.

Dubayah R, Tang H, Armston J, Luthcke S, Hofton M, Blair J (2021b) GEDI L2B Canopy Cover and Vertical Profile Metrics Data Global Footprint Level V002.

DWD Climate Data Center (CDC) (n.d. a) Grids of monthly averaged daily maximum air temperature (2m) over Germany, version v1.0.

DWD Climate Data Center (CDC) (n.d. b) Grids of monthly averaged daily minimum air temperature (2m) over Germany, version v1.0.

DWD Climate Data Center (CDC) (n.d. c) Grids of monthly total precipitation over Germany, version v1.0.

DWD Climate Data Center (CDC) (n.d. d) Monthly grids of the accumulated actual evapotranspiration over grass, version 0.x (date: 19.08.2022).

DWD Climate Data Center (CDC) (n.d. e) Monthly grids of the accumulated potential evapotranspiration over grass, version 0.x (date: 19.08.2022).

Eglington SM, Noble DG, Fuller RJ (2012) A meta-analysis of spatial relationships in species richness across taxa: Birds as indicators of wider biodiversity in temperate regions. Journal for Nature Conservation 20: 301–309. https://doi.org/10.1016/j.jnc.2012.07.002

Elith J, Leathwick JR (2009) Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40: 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S, Schewenius M, Sendstad M, Seto KS, Wilkinson C (eds) (2016) Urbanization, biodiversity and ecosystem services. Challenges and opportunities. https://doi.org/10.1007/978-94-007-7088-1

Elton CS (1927) Animal ecology. Chicago.

Engler JO, Stiels D, Schidelko K, Strubbe D, Quillfeldt P, Brambilla M (2017) Avian SDMs: current state, challenges, and opportunities. Journal of Avian Biology 48: 1483–1504. https://doi.org/10.1111/jav.01248

European Commission (2022) Nature restoration law – For people, climate, and planet. Brussels.

European Environment Agency (2020a) Imperviousness density 2018 (raster 100 m), Europe, 3-yearly, Aug. 2020.

European Environment Agency (2020b) Tree cover density 2018 (raster 100 m), Europe, 3-yearly, Sep. 2020.

Fahrig L (2020) Why do several small patches hold more species than few large patches? Global Ecology and Biogeography 29: 615–628. https://doi.org/10.1111/geb.13059

Fahrig L, Watling JI, Arnillas CA, Arroyo-Rodríguez V, Jörger-Hickfang T, Müller J, Pereira HM, Riva F, Rösch V, Seibold S, Tscharntke T, May F (2022) Resolving the SLOSS dilemma for biodiversity conservation: a research agenda. Biological Reviews 97: 99–114. https://doi.org/10.1111/brv.12792

Feldman MJ, Imbeau L, Marchand P, Mazerolle MJ, Darveau M, Fenton NJ (2021) Trends and gaps in the use of citizen science derived data as input for species distribution models: A quantitative review. PLOS ONE 16: e0234587. https://doi.org/10.1371/journal.pone.0234587

Ferenc M, Sedláček O, Fuchs R (2014) How to improve urban greenspace for woodland birds: site and local-scale determinants of bird species richness. Urban Ecosystems 17: 625–640. https://doi.org/10.1007/s11252-013-0328-x

Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38–49. https://doi.org/10.1017/S0376892997000088

Fletcher R, Fortin M-J (2019) Spatial dependence and autocorrelation. Fletcher R, Fortin M-J (eds) Spatial ecology and conservation modeling: 133–168. Cham, Switzerland. https://doi.org/10.1007/978-3-030-01989-1_5

Fletcher RJ, Didham RK, Banks-Leite C, Barlow J, Ewers RM, Rosindell J, Holt RD, Gonzalez A, Pardini R, Damschen EI, Melo FP, Ries L, Prevedello JA, Tscharntke T, Laurance WF, Lovejoy T, Haddad NM (2018) Is habitat fragmentation good for biodiversity? Biological Conservation 226: 9–15. https://doi.org/10.1016/j.biocon.2018.07.022

Friedman JH (1991) Multivariate adaptive regression splines. The Annals of Statistics 19: 1–67. https://doi.org/10.1214/aos/1176347963

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202: 18–27. https://doi.org/10.1016/j.rse.2017.06.031

Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology letters 4: 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x

Grimmett L, Whitsed R, Horta A (2020) Presence-only species distribution models are sensitive to sample prevalence: Evaluating models using spatial prediction stability and accuracy metrics. Ecological Modelling 431: 109194. https://doi.org/10.1016/j.ecolmodel.2020.109194

Grinnell J (1928) Presence and absence of animals. Berkeley.

Guerry AD, Smith JR, Lonsdorf E, Daily GC, Wang X, Chun Y (2021) Urban nature and biodiversity for cities. Washington D.C. https://doi.org/10.1596/36325

Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecology letters 8: 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x

Guisan A, Thuiller W, Zimmermann NE (2017) Habitat suitability and distribution models. With applications in R. Cambridge. https://doi.org/10.1017/9781139028271

Güneralp B, Seto KC (2013) Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environmental Research Letters 8: 14025. https://doi.org/10.1088/1748-9326/8/1/014025

Haaland C, van den Bosch CK (2015) Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban Forestry & Urban Greening 14: 760–771. https://doi.org/10.1016/j.ufug.2015.07.009

Hamann M (1991) Die Bedeutung von Industriebrachflächen für die Avifauna am Beispiel von Gelsenkirchen (mittleres Ruhrgebiet). Charadrius: 49–62.

Hanski I (1998) Metapopulation dynamics. Nature 396: 41–49. https://doi.org/10.1038/23876

Harrison C, Davies G (2002) Conserving biodiversity that matters: practitioners’ perspectives on brownfield development and urban nature conservation in London. Journal of Environmental Management 65: 95–108. https://doi.org/10.1006/jema.2002.0539

Hastie T, Tibshirani R (1986) Generalized additive models. Statistical Science 1. https://doi.org/10.1214/ss/1177013604

Hastie T, Tibshirani R, Buja A (1994) Flexible discriminant analysis by optimal scoring. Journal of the American Statistical Association 89: 1255–1270. https://doi.org/10.1080/01621459.1994.10476866

He KS, Bradley BA, Cord AF, Rocchini D, Tuanmu M-N, Schmidtlein S, Turner W, Wegmann M, Pettorelli N (2015) Will remote sensing shape the next generation of species distribution models? Remote Sensing in Ecology and Conservation 1: 4–18. https://doi.org/10.1002/rse2.7

Hernandez PA, Franke I, Herzog SK, Pacheco V, Paniagua L, Quintana HL, Soto A, Swenson JJ, Tovar C, Valqui TH, Vargas J, Young BE (2008) Predicting species distributions in poorly-studied landscapes. Biodiversity and Conservation 17: 1353–1366. https://doi.org/10.1007/s10531-007-9314-z

Hijmans R (2022) terra: Spatial data analysis. R package version 1.7-81. https://rspatial.github.io/terra/, https://rspatial.org/.

Hilbert D (2001) The utility of artificial neural networks for modelling the distribution of vegetation in past, present and future climates. Ecological Modelling 46: 311–327. https://doi.org/10.1016/S0304-3800(01)00323-4

Hildén O (1965) Habitat selection in birds: A review. Annales Zoologici Fennici 2: 53–75. https://www.jstor.org/stable/23730835.

Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences Ecological Modelling 199: 142–152. https://doi.org/10.1016/j.ecolmodel.2006.05.017

Huang Y, Zhao Y, Li S, Gadow K von (2015) The effects of habitat area, vegetation structure and insect richness on breeding bird populations in Beijing urban parks. Urban Forestry & Urban Greening 14: 1027–1039. https://doi.org/10.1016/j.ufug.2015.09.010

Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427. https://doi.org/10.1101/SQB.1957.022.01.039

Hutchinson GE (1978) An introduction to population ecology. New Haven.

IPBES (2019) Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn. https://doi.org/10.5281/zenodo.3831673

Isaksson C (2018) Impact of Urbanization on Birds. Tietze DT (ed) Bird Species: 235–257. Cham. https://doi.org/10.1007/978-3-319-91689-7_13

Jiguet F, Julliard R, Thomas CD, Dehorter O, Newson SE, Couvet D (2006) Thermal range predicts bird population resilience to extreme high temperatures. Ecology letters 9: 1321–1330. https://doi.org/10.1111/j.1461-0248.2006.00986.x

Jiménez-Valverde A, Lobo J, Hortal J (2009) The effect of prevalence and its interaction with sample size on the reliability of species distribution models. Community Ecology 10: 196–205. https://doi.org/10.1556/ComEc.10.2009.2.9

Keil P (2019) Industrial nature and species diversity in the Landscape Park Duisburg-Nord. Oberhausen. https://www.bswr.de/downloads/bswr_ep39_2019_keil_industrial_nature_and_spec.pdf

Keil P, Brosch B, Buch C (2013) Open urban-industrial brownfields of high conservation interest: A methodological approach to site selection in the Ruhr metropolis. Natur & Landschaft 88: 213–219. https://doi.org/10.17433/5.2013.50153218.213-219

Keil P, Hering D (eds) (2022) Regionale Biodiversitätsstrategie Ruhrgebiet. Offensive Grüne Infrastruktur 2030. Essen.

Keil P, Hering D, Schmitt T, Zepp H (eds) (2021) Positionen zu einer regionalen Biodiversitäts-Strategie Ruhrgebiet. Essen.

Keller V, Milanesi P, Kipson M, Martí D, Herrando Vila S, Klvaňová A, Voříšek P, Anton M, Rodríguez-Franch M, Kalâkin MV, Foppen RPB, Bauer H-G (2020) European breeding bird atlas 2. Distribution, abundance and change. Barcelona.

Keys R (1981) Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing 29: 1153–1160. https://doi.org/10.1109/TASSP.1981.1163711

Kiel E-F (2005) Artenschutz in Fachplanungen. LÖBF-Mitteilungen: 12–17.

Kiel E-F (2016) Geschützte Arten in Nordrhein-Westfalen. Vorkommen, Erhaltungszustand, Gefährdungen, Maßnahmen. Düsseldorf.

Knapp S, Aronson MFJ, Carpenter E, Herrera-Montes A, Jung K, Kotze DJ, La Sorte FA, Lepczyk CA, Macgregor-Fors I, MacIvor JS, Moretti M, Nilon CH, Piana MR, Rega-Brodsky CC, Salisbury A, Threlfall CG, Trisos C, Williams NSG, Hahs AK (2021) A research agenda for urban biodiversity in the global extinction crisis. BioScience 71: 268–279. https://doi.org/10.1093/biosci/biaa141

Knapp W (1998) The Rhine-Ruhr area in transformation: Towards a European metropolitan region? European Planning Studies 6: 379–393. https://doi.org/10.1080/09654319808720469

Kock N, Lynn G (2012) Lateral Collinearity and Misleading Results in Variance-Based SEM: An Illustration and Recommendations. Journal of the Association for Information Systems 13: 546–580. https://doi.org/10.17705/1jais.00302

Kowallik C, Rautenberg T (2014) Kiebitze Vanellus vanellus als Brutvögel im Westlichen Ruhrgebiet – ein Vergleich der Situation 2014 mit dem NRW-Brutvogelatlas (2005-2009). Charadrius 50: 50–55.

Kowarik I, Buchholz S, Lippe M von der, Seitz B (2016) Biodiversity functions of urban cemeteries: Evidence from one of the largest Jewish cemeteries in Europe. Urban Forestry & Urban Greening 19: 68–78. https://doi.org/10.1016/j.ufug.2016.06.023

Lawson CR, Hodgson JA, Wilson RJ, Richards SA (2014) Prevalence, thresholds and the performance of presence–absence models. Methods in Ecology and Evolution 5: 54–64. https://doi.org/10.1111/2041-210X.12123

Le Louarn M, Clergeau P, Strubbe D, Deschamps-Cottin M (2018) Dynamic species distribution models reveal spatiotemporal habitat shifts in native range-expanding versus non-native invasive birds in an urban area. Journal of Avian Biology 49: jav-01527. https://doi.org/10.1111/jav.01527

Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Vegetatio 80: 107–138. https://doi.org/10.1007/BF00048036

Lepczyk CA, Aronson MFJ, La Sorte FA (2023) Cities as sanctuaries. Frontiers in Ecology and the Environment 21: 251–259. https://doi.org/10.1002/fee.2637

Lin B, Meyers J, Barnett G (2015) Understanding the potential loss and inequities of green space distribution with urban densification. Urban Forestry & Urban Greening 14: 952–958. https://doi.org/10.1016/j.ufug.2015.09.003

Lindsay JB (2016) Whitebox GAT: A case study in geomorphometric analysis. Computers & Geosciences 95: 75–84. https://doi.org/10.1016/j.cageo.2016.07.003

Liu C, White M, Newell G (2011) Measuring and comparing the accuracy of species distribution models with presence-absence data. Ecography 34: 232–243. https://doi.org/10.1111/j.1600-0587.2010.06354.x

Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17: 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x

Márcia Barbosa A, Real R, Muñoz A-R, Brown JA (2013) New measures for assessing model equilibrium and prediction mismatch in species distribution models. Diversity and Distributions 19: 1333–1338. https://doi.org/10.1111/ddi.12100

McCullagh P (1984) Generalized linear models. European Journal of Operational Research 16: 285–292. https://doi.org/10.1016/0377-2217(84)90282-0

McDonald RI, Mansur AV, Ascensão F, Colbert M, Crossman K, Elmqvist T, Gonzalez A, Güneralp B, Haase D, Hamann M, Hillel O, Huang K, Kahnt B, Maddox D, Pacheco A, Pereira HM, Seto KC, Simkin R, Walsh B, Werner AS, Ziter C (2020) Research gaps in knowledge of the impact of urban growth on biodiversity. Nature Sustainability 3: 16–24. https://doi.org/10.1038/s41893-019-0436-6

McPherson JM, Jetz W (2007) Effects of species’ ecology on the accuracy of distribution models. Ecography 30: 135–151. https://doi.org/10.1111/j.2006.0906-7590.04823.x

Mekonen S (2017) Birds as biodiversity and environmental indicator. Journal of Natural Science Research 7(21): 28–34. https://www.iiste.org/Journals/index.php/JNSR/article/view/39931/41049

Meller L, Cabeza M, Pironon S, Barbet-Massin M, Maiorano L, Georges D, Thuiller W (2014) Ensemble distribution models in conservation prioritization: From consensus predictions to consensus reserve networks. Diversity and Distributions 20: 309–321. https://doi.org/10.1111/ddi.12162

Merow C, Dahlgren JP, Metcalf CJE, Childs DZ, Evans ME, Jongejans E, Record S, Rees M, Salguero-Gómez R, McMahon SM (2014) Advancing population ecology with integral projection models: a practical guide. Methods in Ecology and Evolution 5: 99–110. https://doi.org/10.1111/2041-210X.12146

Miller J (2010) Species distribution modeling. Geography Compass 4: 490–509. https://doi.org/10.1111/j.1749-8198.2010.00351.x

Mitchell MS, Lancia RA, Gerwin JA (2001) Using landscape-level data to predict the distribution of birds on a managed forest: Effects of scale. Ecological application: A publication of the Ecological Society of America 11: 1692–1708. https://doi.org/10.1890/1051-0761(2001)011[1692:ULLDTP]2.0.CO;2

Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution 5: 1198–1205. https://doi.org/10.1111/2041-210X.12261

Naimi B, Araújo MB (2016) sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39: 368–375. https://doi.org/10.1111/ecog.01881

Nielsen AB, van den Bosch M, Maruthaveeran S, van den Bosch CK (2014) Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosystems 17: 305–327. https://doi.org/10.1007/s11252-013-0316-1

Ottoni I, Oliveira FF de, Young RJ (2009) Estimating the diet of urban birds: The problems of anthropogenic food and food digestibility. Applied Animal Behaviour Science 117: 42–46. https://doi.org/10.1016/j.applanim.2008.11.002

Pearce J, Ferrier S, Scotts D (2001) An evaluation of the predictive performance of distributional models for flora and fauna in north-east New South Wales. Journal of Environmental Management 62: 171–184. https://doi.org/10.1006/jema.2001.0425

Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Computers & Geosciences 30: 683–691. https://doi.org/10.1016/j.cageo.2004.03.012

Petitpierre B, Broennimann O, Kueffer C, Daehler C, Guisan A (2017) Selecting predictors to maximize the transferability of species distribution models: lessons from cross-continental plant invasions. Global Ecology and Biogeography 26: 275–287. https://doi.org/10.1111/geb.12530

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Pickett S, Cadenasso ML, Grove JM, Nilon CH, Pouyat RV, Zipperer WC, Costanza R (op. 2008) Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas Urban ecology: 99–122. New York. https://doi.org/10.1007/978-0-387-73412-5_7

Pulliam HR (1988) Sources, Sinks, and Population Regulation. The American naturalist 132: 652–661. https://doi.org/10.1086/284880

R Core Team (2022) R: A language and environment for statistical. Vienna, Austria.

Randin CF, Ashcroft MB, Bolliger J, Cavender-Bares J, Coops NC, Dullinger S, Dirnböck T, Eckert S, Ellis E, Fernández N, Giuliani G, Guisan A, Jetz W, Joost S, Karger D, Lembrechts J, Lenoir J, Luoto M, Morin X, Price B, Rocchini D, Schaepman M, Schmid B, Verburg P, Wilson A, Woodcock P, Yoccoz N, Payne D (2020) Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment 239: 111626. https://doi.org/10.1016/j.rse.2019.111626

Regionalverband Ruhr (2021) Metropole Ruhr - Die Region in Zahlen. Essen.

Regionalverband Ruhr (2022) Biodiversität in der Metropole Ruhr. Raumanalyse der Industrienatur. https://www.rvr.ruhr/themen/oekologie-umwelt/gruene-infrastruktur/biodiversitaetsstrategie/raumanalyse-der-industrienatur/.

Ridgeway G (1999) The state of boosting. Berk K, Pourahmadi M (eds) Computing Science and Statistics 31: 172–181. Fairfax.

Ripley BD (2008) Pattern Recognition and Neural Networks. Cambridge.

Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, Hauenstein S, Lahoz-Monfort JJ, Schröder B, Thuiller W, Warton DI, Wintle BA, Hartig F, Dormann CF (2017) Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40: 913–929. https://doi.org/10.1111/ecog.02881

Rocchini D, Balkenhol N, Carter GA, Foody GM, Gillespie TW, He KS, Kark S, Levin N, Lucas K, Luoto M, Nagendra H, Oldeland J, Ricotta C, Southworth J, Neteler M (2010) Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges. Ecological Informatics 5: 318–329. https://doi.org/10.1016/j.ecoinf.2010.06.001

Rocchini D, Boyd DS, Féret J-B, Foody GM, He KS, Lausch A, Nagendra H, Wegmann M, Pettorelli N (2016) Satellite remote sensing to monitor species diversity: Potential and pitfalls. Remote Sensing in Ecology and Conservation 2: 25–36. https://doi.org/10.1002/rse2.9

Root T (1988) Environmental factors associated with avian distributional boundaries. Journal of Biogeography 15: 489. https://doi.org/10.2307/2845278

Roughgarden J, Running SW, Matson PA (1991) What does remote sensing do for ecology? Ecology 72: 1918–1922. https://doi.org/10.2307/1941546

Savard J-PL, Clergeau P, Mennechez G (2000) Biodiversity concepts and urban ecosystems. Landscape and Urban Planning 48: 131–142. https://doi.org/10.1016/S0169-2046(00)00037-2

Scott JM, Csuti B, Jacobi JD, Estes JE (1987) Species richness. BioScience 37: 782–788. https://doi.org/10.2307/1310544

Segurado P, Araújo MB (2004) An evaluation of methods for modelling species distributions. Journal of Biogeography 31: 1555–1568. https://doi.org/10.1111/j.1365-2699.2004.01076.x

Smith AM, Sutton SG (2008) The role of a flagship species in the formation of conservation intentions. Human Dimensions of Wildlife 13: 127–140. https://doi.org/10.1080/10871200701883408

Smith SL, Holland DA, Longley PA (2004) The importance of understanding error in lidar digital elevation models. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives: 996–1001. https://www.isprs.org/proceedings/XXXV/congress/comm4/papers/488.pdf

Snep R, Opdam P, Baveco JM, WallisDeVries MF, Timmermans W, Kwak R, Kuypers V (2006) How peri-urban areas can strengthen animal populations within cities: A modeling approach. Biological Conservation 127: 345–355. https://doi.org/10.1016/j.biocon.2005.06.034

Soanes K, Lentini PE (2019) When cities are the last chance for saving species. Frontiers in Ecology and the Environment 17: 225–231. https://doi.org/10.1002/fee.2032

Spangenberg JH (2007) Biodiversity pressure and the driving forces behind. Ecological Economics 61: 146–158. https://doi.org/10.1016/j.ecolecon.2006.02.021

Spotswood EN, Beller EE, Grossinger R, Grenier JL, Heller NE, Aronson MFJ (2021) The biological deserts fallacy: Cities in their landscapes contribute more than we think to regional biodiversity. BioScience 71: 148–160. https://doi.org/10.1093/biosci/biaa155

Steen VA, Elphick CS, Tingley MW (2019) An evaluation of stringent filtering to improve species distribution models from citizen science data. Diversity and Distributions 25: 1857–1869. https://doi.org/10.1111/ddi.12985

Steen VA, Tingley MW, Paton PWC, Elphick CS (2021) Spatial thinning and class balancing: Key choices lead to variation in the performance of species distribution models with citizen science data. Methods in Ecology and Evolution 12: 216–226. https://doi.org/10.1111/2041-210X.13525

Südbeck P, Andretzke H, Fischer S, Gedeon K (2005) Methodenstandards zur Erfassung der Brutvögel Deutschlands. Radolfzell.

Sudmann SR, Schmitz M, Grüneberg C, Herkenrath P, Jöbges MM, Mika T, Nottmeyer K, Schidelko K, Schubert W, Stiels D (2023) Rote Liste der Brutvogelarten Nordrhein-Westfalens, 7. Fassung, Stand: Dezember 2021. Charadrius 57: 75–130.

Symonds MRE, Johnson CN (2008) Species richness and evenness in Australian birds. The American naturalist 171: 480–490. https://doi.org/10.1086/528960

Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Siqueira MF de, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427: 145–148. https://doi.org/10.1038/nature02121

Thuiller W, Georges D, Gueguen M, Engler R, Breiner F, Lafourcade B, Patin R (2023) biomod2: Ensemble platform for species distribution modeling.

Tjørve E (2010) How to resolve the SLOSS debate: lessons from species-diversity models. Journal of theoretical biology 264: 604–612. https://doi.org/10.1016/j.jtbi.2010.02.009

Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Economic Geography 46: 234. https://doi.org/10.2307/143141

Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2019) blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods in Ecology and Evolution 10: 225–232. https://doi.org/10.1111/2041-210X.13107

Valavi R, Guillera-Arroita G, Lahoz-Monfort JJ, Elith J (2022) Predictive performance of presence-only species distribution models: A benchmark study with reproducible code. Ecological Monographs 92: e01486. https://doi.org/10.1002/ecm.1486

Vallecillo S, Maes J, Polce C, Lavalle C (2016) A habitat quality indicator for common birds in Europe based on species distribution models. Ecological Indicators 69: 488–499. https://doi.org/10.1016/j.ecolind.2016.05.008

Venables WN, Ripley BD (2011) Modern applied statistics with S. Statistics and computing. New York, London.

Venter ZS, Barton DN, Gundersen V, Figari H, Nowell M (2020) Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environmental Research Letters 15: 104075. https://doi.org/10.1088/1748-9326/abb396

Veríssimo D, Pongiluppi T, Santos MCM, Develey PF, Fraser I, Smith RJ, MacMilan DC (2014) Using a systematic approach to select flagship species for bird conservation. Conservation Biology 28: 269–277. https://doi.org/10.1111/cobi.12142

Villaseñor NR, Escobar MAH (2019) Cemeteries and biodiversity conservation in cities: how do landscape and patch-level attributes influence bird diversity in urban park cemeteries? Urban Ecosystems 22: 1037–1046. https://doi.org/10.1007/s11252-019-00877-3

Whitford AM, Shipley BR, McGuire JL (2024) The influence of the number and distribution of background points in presence-background species distribution models. Ecological Modelling 488: 110604. https://doi.org/10.1016/j.ecolmodel.2023.110604

Williams JN, Seo C, Thorne J, Nelson JK, Erwin S, O’Brien JM, Schwartz MW (2009) Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions 15: 565–576. https://doi.org/10.1111/j.1472-4642.2009.00567.x

Wu J, Zhang S, Luo Y, Wang H, Zhao Y (2022) Assessment of risks to habitat connectivity through the stepping-stone theory: A case study from Shenzhen, China. Urban Forestry & Urban Greening 71: 127532. https://doi.org/10.1016/j.ufug.2022.127532

Wunderlich RF, Lin Y-P, Anthony J, Petway JR (2019) Two alternative evaluation metrics to replace the true skill statistic in the assessment of species distribution models. Nature Conservation 35: 97–116. https://doi.org/10.3897/natureconservation.35.33918

Yang X, Tan X, Chen C, Wang Y (2020) The influence of urban park characteristics on bird diversity in Nanjing, China. Avian Research 11: 1–9. https://doi.org/10.1186/s40657-020-00234-5

Yee TW, Mitchell ND (1991) Generalized additive models in plant ecology. Journal of Vegetation Science 2: 587–602. https://doi.org/10.2307/3236170

Zanaga D, van de Kerchove R, Daems D, Keersmaecker W de, Brockmann C, Kirches G, Wevers J, Cartus O, Santoro M, Fritz S, Lesiv M, Herold M, Tsendbazar N-E, Xu P, Ramoino F, Arino O (2022) ESA WorldCover 10 m 2021 v200.

Zepp H (2018) Regional green belts in the Ruhr region. A planning concept revisited in view of ecosystem services. Erdkunde 72: 1–23. https://doi.org/10.3112/erdkunde.2018.01.01

Zepp H, Gessner M, Gruenhagen L, Bührs M (2023) Modeling the cooling effect of urban green spaces: The neglected control variables of ‘soil moisture’ and ‘biotope types’. Urban Forestry & Urban Greening 90: 128137. https://doi.org/10.1016/j.ufug.2023.128137

Zepp H, Groß L, Inostroza L (2020) And the winner is? Comparing urban green space provision and accessibility in eight European metropolitan areas using a spatially explicit approach. Urban Forestry & Urban Greening 49: 126603. https://doi.org/10.1016/j.ufug.2020.126603

Downloads

Published

2024-09-23

How to Cite

Bührs, M., Zepp, H., & Schmitt, T. (2024). Evaluating urban biodiversity: Effectiveness of citizen science driven species distribution models in urban ecosystems: A case study in the Ruhr Metropolis, Germany. ERDKUNDE, 78(3), 195–224. https://doi.org/10.3112/erdkunde.2024.03.03

Issue

Section

Research Article