Supplement

Tab. S1: Satellite imagery used for the shore change analysis.

Site	Date	Context	Source	Resolution
Tolosa	18 th Oct 2013	21 days before Haiyan		0.5 m
	15 th Nov 2013	7 days after Haiyan	Pléiades	
	20 th May 2015	18 months after Haiyan		
Dolores	10 th Sep 2013	59 days before Haiyan		0.5 m
	14 th Nov 2013	6 days after Haiyan	Pléiades	
	20 th May 2015	18 months after Haiyan		

Tab. S2: Calculated error margins related to spatial imagery analysis; see Table S1 for details on satellite imagery (RMS = root mean square).

Location	Tolosa	Dolores
Tide level variation (m)	0.81	1.16
Beach Slope (β)	0.06	0.03
Tidal maximum variation (m)	0.3	0.3
Horizontal shoreline change (m)	±5	±10
Run-up variation (m)	±10	±10
Total RMS Error (m)	± 11.2	± 14.1

Fig. S1: Shoreline change analysis. Shorelines were digitized on satellite images from October 2013 to May 2015 (Table S1). The rate-of-change-statistics were computed using the Digital Shoreline Analysis System (DSAS) (THIELER et al. 2009). Shorelines are intersected by shore-perpendicular transects to calculate shoreline changes based on measurement of distances to a fixed baseline. The image section shows coastal changes in Tolosa. Note the large retreat after Typhoon Haiyan and the following recovery until 2015, depicted on an ESRI basemap.

Fig. S2: Local inundation limits at Tolosa. Typhoon Haiyan flooded the whole study area reaching inundation of >1000 m inland. The position of sampling points and topographical cross sections is shown in Figure 1c of the main text (basemap: Pléiades satellite image of 15th Nov 2013, Table S1).

Fig. S3: Sedimentary characteristics of TOL 14-5 on top of the active barrier, as documented in 2014 shortly after Typhoon Haiyan (Fig. 2, main text). A core log, grain-size distributions, univariate grain-size measures, magnetic susceptibility and loss-on-ignition (LOI) values are shown. The 16 cm thick laminated typhoon unit consists of a horizontally laminated basal part and cross-bedded upper part, both representing the laminated Unit 2. The typhoon deposit can clearly be separated from the pre-Haiyan soil based on lower LOI and magnetic susceptibility, as well as its minor clay and silt component (slightly modified from BRILL et al. 2016).

Fig. S4: Short core TOL 15-8 from 2015 with granulometric data (for location see Figure 2, main text).

Fig. S5: Short core TOL 15-6 from 2015 with granulometric data (for location see Fig. 2, main text).

Fig. S6: Short core TOL 15-5 from 2015 with granulometric data (for location see Fig. 2, main text).

Fig. S7: Short core TOL 15-3 from 2015 with granulometric data (for location see Fig. 2, main text).

Fig. S8: Short core TOL 15-1 from 2015 with granulometric data (for location see Fig. 2, main text).

Fig. S9: Short core DOL 9 (2015) with granulometric data (for location see Fig. 5, main text).

Fig. S10: Short core DOL 1 (2015) with granulometric data (for location see Fig. 1b, main text).

Fig. S11: Short core DOL 15 (2016) with granulometric data (for location see Fig. 5, main text).

Fig. S12: Short core DOL 10 (2016) with granulometric data (for location see Fig. 1b, main text).

Tab. S3: Sampling location and mean grain size of offshore samples. Grain size significantly decreases with increasing water depth and distance to the shoreline.

Location	Sample	Depth (m)	Distance to shoreline (m)	Mean grain size (µm)
	TOLO 1	1.2	25	246.0
	TOLO 2	3.1	70	231.6
Tolosa	TOLO 3	4.3	120	391.8
10105a	TOLO 4	10.6	230	68.11
	TOLO 5	13.2	400	19.31
	TOLO 6	13.4	480	32.84
	DOLO 1	0.9	1	282.8
	DOLO 2	2.1	10	217.0
	DOLO 3	4.0	100	130.9
Doloroo	DOLO 4	4.8	200	106.9
Dolores	DOLO 5	5.1	300	110.0
	DOLO 6	6.1	600	70.36
	DOLO 7	8.6	1000	33.68
	DOLO 8	10.7	1500	18.66

Tab. S4: Net shoreline movement (NSM) at Tolosa and Dolores. The number of transects (in brackets) indicates at how many locations erosion or progradation was measured.

Location		Tolosa		Dolores	
Period		18/10/2013 – 15/11/2013	15/11/2013 – 20/05/2015	10/09/2013 – 14/11/2013	14/11/2013 – 19/05/2015
Progradation in m (number of	Average	0	17 (198)	57 (164)	12 (80)
	Outlets	0	32 (46)	73 (101)	20 (21)
transects)	Without outlets	0	12 (152)	31 (63)	9 (59)
Erosion in m	Average	- 26 (215)	- 9 (17)	- 15 (103)	- 26 (161)
(number of	Outlets	- 35 (63)	- 9 (17)	- 5 (5)	- 51 (59)
transects)	Without outlets	- 22 (152)	0	- 15 (98)	- 12 (102)
Average shoreline change in m (number of transects)		- 26 (215)	15 (215)	29 (267)	- 14 (241)

References

BRILL D, MAY SM, ENGEL M, REYES M, PINT A, OPITZ S, DIERICK M, GONZALO LA, ESSER S, BRÜCKNER H (2016) Typhoon Haiyan's sedimentary record in coastal environmentsof the Philippines and its palaeotempestological implications. *Natural Hazards and Earth System Sciences* 16: 2799–2822. https://doi.org/10.5194/nhess-2016-224

THIELER ER, HIMMELSTOSS EA, ZICHICHI JL, ERGUL A (2009) Digital Shoreline Analysis System (DSAS) version 4.0 — An ArcGIS extension for calculating shoreline change. *USGS Open-File Report* 2008-1278. https://doi.org/10.3133/ofr20081278