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Summary: The distinction between geographical patterns caused by underlying environmental factors and inherent spatial 
autocorrelation is a general challenge for field research. The quality and validity of  phytogeographical studies is strongly de-
pendent on disentangling spatial and ecological proximity. This is also crucial for applied studies in nature conservation. One 
key assumption for many statistical analyses is the independence of  observations. In this study we first identify the range of  
spatial autocorrelation in managed grasslands based on field data. Along a gradient in a valley bottom, we set up five 60 m 
x 60 m squares, segmented in 36 10 m x 10 m square grid cells. In 20 of  the 10 m x 10 m grid cells, we sampled vegetation 
along a 10 m line with a buffer of  one meter resulting in a 20 m² sampling plot. In a second step, we matched Sentinel-2 im-
ages for the same locations and calculated the normalized difference vegetation index NDVI and the normalized difference 
red edge index NDRE. For both, field data and satellite data, Mantel correlograms for floristic distances and spectral indices 
were used to analyse the spatial autocorrelation. We found the vegetation in the studied grasslands to be spatially correlated 
up to 25 m. At none of  the studied sites the positive spatial autocorrelation reaches beyond. The spatial autocorrelation of  
spectral indices correlates well with the correlations observed field data. The correlograms of  NDVI resembled the ones of  
the field data slightly better compared to the correlograms of  NDRE and RGB. We conclude that employing remote sensing 
to assess the role of  spatial autocorrelation for grasslands is a valid approach. We show that it reflects similar patterns as the 
field data. The spatial resolution of  freely available satellite data proved sufficient to test for the minimum distance between 
vegetation samples to avoid spatial autocorrelation.
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1 Introduction

Spatial patterns are omnipresent in ecology and 
biogeography, identifying them provides the basis 
to understanding spatial ecological data and un-
derlying drivers (maCarthur 1972, lEvin 1992, 
BEiErkuhnlEin 2007). An important concept in ecol-
ogy is spatial dependence, best described by Tobler’s 
first law of geography “everything is related to every-
thing else, but near things are more related than dis-
tant things” (toBlEr 1970). It implies that covariance 
and correlation of measures close to each other should 
be high and decrease with increasing spatial distance. 
This can be a result of population or community dy-
namics also referred to as inherent autocorrelation 
or stochasticity (shoEmakEr et al. 2020). However, it 
also can be the expression of an underlying ecological 
driver that contains a spatial dependence (e.g., eleva-
tional gradient) or interactions amongst neighbour-
ing organisms (WagnEr & Fortin 2005). Intricately 
linked to spatial patterns in ecology is the term spatial 
autocorrelation, which is often used interchangeably 
with spatial dependence. However, spatial autocor-
relation only refers to spatial patterns driven by en-

dogenous mechanisms (occurring directly from re-
sponse variable considered) while spatial dependence 
refers to both, endogenous and exogenous (also oc-
curring outside of response variable, such as environ-
mental gradients) mechanisms (BolkEr 2003, dalE 
& Fortin 2014). And while detecting an underlying 
environmental gradient that drives spatial patterns 
in ecology is desirable, spatial autocorrelation is con-
sidered “noise” that diffuses the observed pattern. 
Understanding this distinction is critical for ecolo-
gists, as it allows for a more nuanced interpretation of 
ecological patterns and informs the selection of ap-
propriate analytical methods. Therefore, distinction 
between the terminologies is also important when 
analysing spatial patterns. 

Spatial autocorrelation received considerable at-
tention from ecologists, mainly either population 
geneticists analysing small-scale spatial genetic struc-
tures of populations (guillot et al. 2009) or bio-
geographers interested in macroecological patterns 
(kissling & Carl 2008). It is a much-discussed topic 
in ecology (e.g., goslEE 2006, roE et al. 2012) gen-
erally described as a pair of observations depending 
on their distance from each other are more (posi-
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tive spatial autocorrelation) or less (negative spatial 
autocorrelation) similar compared to the expected 
similarity of a randomly associated pair (lEgEndrE 
1993). Spatial autocorrelation is defined as the lack of 
independence between observations because of their 
spatial closeness (lEgEndrE & lEgEndrE, 1998). 
However, independent observations are a require-
ment for many common statistical analyses (sokal & 
odEn 1978, haining 1990, diniz-Filho et al. 2003, 
dormann et al. 2007, dray et al. 2012, PougEt et 
al. 2021). Ignoring spatial autocorrelation in ecologi-
cal data can lead to artificially inflating the sampling 
size with pseudo-replication and significantly alter the 
statistical results (hurlBErt 1984). Inherently, any 
distance matrices or comparisons between observa-
tions are under the influence of spatial autocorrelation 
(lEgEndrE & Fortin 2010, mEirmans 2012) and spe-
cies distribution models have been found to benefit 
from incorporating spatial autocorrelation (dormann 
2007). Measuring spatial autocorrelation is relevant on 
different scales, from local and regional (Bini et al. 
2000) to latitudinal gradients (JEtz & rahBEk 2001). 
It is present in all vegetation studies and should be 
considered when planning field sampling.

Traditionally, one long standing sampling re-
quirement when sampling vegetation in plots or 
sampling units is the relative homogeneity through-
out the sample stand area (EllEnBErg & muEllEr-
domBois 1974) and refers to the consistency or simi-
larity of vegetation characteristics within a sampling 
unit. Homogeneity in this sense is seen as a measure 
to ensure that sampling takes place in a representa-
tive vegetation stand for the landscape investigated 
and to not include a gradient already in one single 
sampling site. The selection of a homogenous veg-
etation stand is a subjective process, an issue that can 
be addressed by sampling fixed area plots around 
concrete coordinates within the landscape under in-
vestigation (ChiaruCCi 2007). Even though the topic 
of the necessity of homogeneity of the vegetation 
within one sampling area and the different concepts 
of vegetation sampling behind it are much debated 
(e.g., Braun-BlanquEt 1965, láJEr 2007, ChiaruCCi 
2007), in many vegetation studies, a “homogeneous” 
sampling area is the standard. In contrast, spatial 
heterogeneity of vegetation stands is often used as 
a proxy for beta diversity. High spatial heterogene-
ity in a landscape is often considered as a crucial 
component in maintaining ecosystem functions. A 
reduction of spatial heterogeneity, defined as an in-
crease of uniformity in vegetation is in this concept 
therefore considered as an indicator for landscape 
degradation (BEstElmEyEr et al. 2011). 

Diameters of homogeneous patches may be as-
sessed to analyse the effect of different management 
or different landscape positions (mEyErs et al. 2014). 
In the context of managed grasslands, the extent of 
spatial autocorrelation varies from 20 m (mEyErs et 
al. 2014) to 100 m (Podani & Csontos 2006) and 
is quantified using Mantel correlograms (lEgEndrE 
& Fortin 1989, king et al. 2004, CaBallEro et al. 
2008, gallardo-Crúz et al. 2010, lEgEndrE et al. 
2015, Wildi 2017). A major issue is the distinction 
of inherent autocorrelation from spatial dependence 
induced by underlying environmental factors, e.g., 
soil moisture (Fortin & dalE 2009) which must 
be addressed by appropriate sampling approaches 
(sChWEigEr et al. 2016). Generally, the species as-
semblages of hay meadows are influenced by man-
agement (uniform per field unit), nutrient availability 
and soil moisture (EllEnBErg & lEusChnEr 2010, 
kollmar et al. 2010). And while agricultural man-
agement is uniform per field unit, the sizes vary con-
siderably. In southern Germany for example, small 
pieces of land prevail (often smaller than 0.3 ha) with 
potential significant differences in their manage-
ment intensities on a small spatial scale.

Remote sensing provides valuable tools to moni-
tor landscape dynamics and finding patterns of 
similarities or differences within and between land-
scapes (singh et al. 2010, PEttorElli et al. 2017). 
Additionally, promising methods are under develop-
ment for mapping species richness and monitoring 
and quantifying biodiversity from space (roCChini 
et al. 2021, roCChini et al. 2022). Especially in con-
servation planning and monitoring, remote sensing 
techniques and approaches gain importance as a cost 
and time efficient option for ecological monitoring 
(kEnnEdy et al. 2009, Willis 2015, ali et al. 2016, 
rEinErmann et al. 2020). In satellite remote sensing, 
indirect measurements and indices are used to relate 
the spectral signal to plant diversity on the ground. 
One popular index is the normalized difference vege-
tation index (NDVI), which is derived from the red to 
near-infrared reflectance ratios (Equation 1) (rousE 
et al. 1974). With the launch of the Sentinel-2 satel-
lite program in 2015, high resolution, multispectral 
remote sensing data is available free of charge via the 
Copernicus website and the vast amount of earth ob-
servation data available facilitates the development of 
ecological applications (ustin & middlEton 2021). 
While a proper set up for field data collection is cru-
cial, scouting the area of interest via remote sensing 
methods to exclude bias and potential inherent errors 
is not widely used yet. As the spatial autocorrelation 
can differ significantly on a local level in space and 



27Evaluating remote sensing data as a tool to minimize spatial autocorrelation in in-situ vegetation sampling2025

time (hErBEn et al. 1995), in theory, prior to each field 
sampling the reach of spatial autocorrelation should 
be checked. In reality, approximations and thresholds 
based on similar studies or found in literature are usu-
ally deemed sufficient. While this might be applicable 
when studying large scale spatial patterns, this quickly 
becomes an issue when working on small scale dif-
ferences within patchy landscapes. hEnEBry (1993) 
suggests the detection of changes in grasslands based 
on measuring changes in spatial dependence based on 
Landsat data, but rather focuses on monitoring chang-
es in the spatial patterns within grasslands than spatial 
autocorrelation measurements per se. We suggest em-
ploying the freely and readily available data Sentinel-2 
provides to a-priori ensure the independence of the 
sampled vegetation data. With its 10 m pixel resolution 
it fits the common sampling sizes of grassland vegeta-
tion sampling units well.

Therefore, in this study we combine the issue 
of spatial autocorrelation and its range in managed 
grasslands with the potential opportunity to quan-
tify spatial autocorrelation from space. With this 
approach, data quality and its statistical usability of 
vegetation sampling could be significantly improved. 
We investigate on the one hand, up to which distance 
the species combination of managed grasslands in 
our study area is homogeneous to the point of be-
ing spatially autocorrelated. In the next step, we test 
whether the spatial autocorrelation patterns found in 
the field are supported by space-borne remote sens-
ing approaches. To do so, we analyse the spatial auto-
correlation of the values for the indices derived from 
remote sensing data at the same spatial resolution for 
the same study area and plot extents. As the tested 
indices (NDVI and NDRE) are already proven to be 
good proxies for biomass (PiñEiro et al. 2006), plant 
species composition (hE et al. 2009) and plant health 
(Boiarskii & hasEgaWa 2019), we expect the remote 
sensing patterns to follow field pattern.

2 Material and Methods

2.1 Study area

The study area is situated in the upper Altmühl 
valley (Bavaria, Germany), a wide valley frequently 
subjected to flooding events in late winter. For 30 
years, water management measures linked to wa-
ter transfer to the Main catchment reduced the oc-
currence and intensities of those floodings. The 
soils of the study sites consist of loamy to clayey 
Gleyic Fluvisols (Auengley and Vega-Gley) (lFu 

2021B). The large-scale nature conservation pro-
ject “Lebensraum Altmühltal” was established in 
2020. All grasslands studied are protected under the 
European Habitats 2000 directive and are labelled as 
Natura2000 sites (Fig. 1). In EUNIS, these sites are 
classified as “Moist or wet eutrophic and mesotrophic 
grassland”. Regional conservation measures like the 
Bavarian VNP (Vertragsnaturschutzprogramm = 
contract-based conservation program) apply. All sur-
veyed grasslands are part of the same VNP category 
(H22), with management restriction (no mowing be-
fore the 15th of June) and complete prohibition of 
fertilization (lFu 2021a). Sampling sites cover a spa-
tial gradient of 3 km. As only marginal differences 
in altitude, climate and soil properties are present as 
well as regulations for management are identical, we 
can assume that the sampling sites are comparable 
regarding environmental conditions. The analysed 
grasslands (moist lowland hay meadows) phytosocio-
logically belong to the order Arrhenatheretalia. They 
comprise more species than the Ranunculus repens-Al-
opecurus-pratensis communities, but less herb species 
compared to well-developed Arrhenatheretum stands. 
The nutrient supply is moderate to fair, and the area 
is periodically flooded. Therefore, we find species 
characteristic of the Lolio-Potentillion alliance as well. 

2.2 Methods

The grasslands were sampled in August 2020. 
At each site a 60 m x 60 m square was placed, its 
edges marked with a handheld GPS device (Garmin 
GPSMap 64s) and divided into 36 10 m x 10 m 
squares using a tape measure. Vegetation was re-
corded in a systematic grid within the 10 m x 10 m 
cells. As negative impact on the grasslands by tram-
pling had to be limited, a point-line-method rather 
than the classical square plot approach was applied 
diagonally within the 10 m² cells (see Fig. 2). Data 
were recorded along 10 m length by recording spe-
cies touching a vertically placed stick every 50 cm 
(dagEt & PoissonnEt 1971, Bartha et al. 1995). 
Additionally, all species not yet recorded along the 
10 m line but growing within a buffer of 1 m on both 
sides of the 10 m line were recorded with a cover 
value smaller than 5%. Frequency values of point ob-
servations reflect the probability to observe a certain 
species, which equals the cover value of this species 
(dagEt & PoissonEt 1971).

The workflow for the data analyses is visualized 
in Fig. 3. After sampling the vegetation, a matching 
Sentinel-2 scene from 9 Aug 2020 was preprocessed 
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to Level-2 analysis-ready data (ARD) using FORCE 
version 3.5.2 (Frantz 2019). This study used the 
bands of 10 m and 20 m resolution (CoPErniCus 
2021). A resolution merge was performed improv-
ing the spatial resolution of the 20 m bands to 10 
m using the ImproPhe method (Frantz et al. 2016). 

In R (version 4.0.3, r CorE tEam 2020) the spectral 
information was extracted for the GPS locations.

To account for deviating GPS precision, pixels 
were selected that fit best within the margins marked 
in the field. Within each grid cell, all pixel values 
were extracted. The grain of the pixels was 10 m x 

Fig. 1: Field sampling sites located in the Altmühl Valley, Germany. “Grasslands” are mapped via the 2018 Co-
pernicus Land Cover Classification (Copernicus 2020). Research sites (A to E) with 20 vegetation samples fol-
low the gradient of  the valley (coordinate reference system: UTM 32, ETRS1989, Natura2000-sites (LfU n.d.).

Fig. 2: Sampling design. In a), the general setup of  the five sites along the river Altmühl (blue line) is depicted schematically. 
One grid as depicted in b) is located in each one of  the five sites visible in a). The square is segmented in 36 10 m x 10 m 
squares and in each gray square vegetation sampling is conducted (c). The sampling is done along a 10 m line, including 
the surrounding 1 m on both sides along the sampling line.
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10 m, corresponding with the cell sizes of vegetation 
records. NDVI was calculated with 10 m resolution 
according to Equation 1.

1)

NDVI: Normalized Difference vegetation Index, 
NIR: Near Infrared (Sentinel-2 band 8), RED: Red 
(Sentinel-2 band 4)

The normalized difference red edge index 
(NDRE) is calculated similar to the NDVI but uses 
the red edge instead of the red channel. The NDRE 
was calculated with 10 m resolution according to 
Equation 2.

2)

NDRE: Normalized Difference Red Edge Index, 
NIR: Near Infrared (Sentinel-2 band 8), REDEDGE: 
Red Edge (Sentinel-2 band 5)

Additionally, we used the combination of the red, 
green and blue bands (Sentinel-2 bands 4, 3, 2) at a 
spatial resolution of 10 m. We calculated the Euclidean 
distance in a three-dimensional colourspace spanned 
by the standardized red, green and blue bands to 

analyse the spectral variability instead of deriving an 
RGB-vegetation index (Biró et al. 2024, ludWig et al. 
2024). Given a grassland sampling site of 6 x 6 neigh-
bouring pixels we assumed uniform brightness and 
the Euclidean distances are sufficient. 

Mantel correlograms were applied for spatial 
autocorrelation using floristic and spatial distances. 
Floristic distances were calculated using Bray-Curtis 
distances (D). The complementary Bray-Curtis sim-
ilarities (S) are calculated by subtracting the Bray-
Curtis distances from 1 (S=1-D). The following 
breakpoints were chosen: 5, 15, 25, 35, 45, 55, 65, 75 
[m] for the analysis using the R-package ‘dave’ (Wildi 
2017). The spatial autocorrelation analysis of the 
spectral data was done in analogy to the floristic data 
using Euclidean distances. The distances up to which 
data are spatially autocorrelated are compared for the 
floristic data and the spectral indices. Using linear 
models without intercept, the dependence of the 
Mantel correlation coefficients of the spectral indices 
in dependence on the Mantel correlation coefficients 
of vegetation across all distance classes is analysed. 
The distribution of Bray-Curtis similarities for the 
vegetation data by step width was visualized using 
boxplots. The vegetation samples were assigned 
to grassland types following sturm et al. (2018). 

Fig. 3: Methodical approach and workflow for the assessment of  spatial autocorrelation in vegetation 
and remote sensing data. Vegetation records and data form the downloaded Sentinel-2 image were 
separately analysed with the same approach and the results compared via linear models.

NDVI = NIR – RED
NIR + RED

Band 8 – Band 4
Band 8 + Band 4=

NDRE = NIR – RED
NIR + RED

Band 8 – Band 5
Band 8 + Band 5=EDGE

EDGE
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The general species assemblage for the five sampling 
sites was investigated via NMDS with the R package 
‘vegan’ (oksanEn et al. 2020). The species frequen-
cies were square root transformed and subjected to a 
Wisconsin double standardization before calculating 
Bray-Curtis distances. Only species occurring in at 
least three samples were included in the ordination. 
The NMDS-result is rotated so that the variance of 
points is maximized on the first dimension. The 
resulting plot was rescaled following a half-change 
scaling approach (oksanEn et al. 2020). Ellenberg 
indicator values were used to describe moisture con-
ditions, as the indicator values have been proven suit-
able for describing local environmental conditions 
(sChaFFErs & sýkora 2000). The arithmetic mean 
of the Ellenberg indicator value moisture was calcu-
lated for every inventory (EllEnBErg & lEusChnEr 
2010; WEsChE et al. 2012). A surface representing the 
mean moisture values of the inventories was inter-
polated using a GAM-approach. A linear fit of mean 
moisture indicator values was applied and reported. 

3 Results

The floristic Bray-Curtis similarity showed that 
the smaller the distance between plots, the higher 
the similarity of the species composition (Fig. 4). Up 

until 50 m distance the median Bray-Curtis similar-
ity value was higher than 0.5. Between the samples 
of the different sites the median similarity value was 
0.42. The inter-quartile-range of the similarity values 
comprised 0.2 across spatial distance classes. Even in 
the shortest distance classes, a quarter of the sample 
pairs showed a species composition turnover of 50% 
(Bray-Curtis similarity < 0.5).

To quantify to which extent spatial autocorrela-
tion is responsible for this pattern, the vegetation 
data was analysed via Mantel correlograms. These 
indicated spatial autocorrelation in the two short-
est distance classes 5-15 m and 15-25 m (Fig. 5). At 
none of the studied sites, the spatial autocorrelation 
reached the distance class 25-35 m. At larger dis-
tance classes (35-65 m) weak negative correlations 
can be observed. Additionally, vegetation and spatial 
data are significantly correlated as shown by Mantel 
test (r < 0.5) (Table 1). 

The pattern of spatial autocorrelation of the spec-
tral indices behaved comparable to the one for the 
vegetation. In most replicates autocorrelation reached 
up to 10-25 m. At the distance class 25-35 m the indi-
ces were not autocorrelated. At larger distances, weak 
negative autocorrelation can be observed. The corre-
lograms of the different indices ran almost parallel. 
For two sites, the RGB curve deviated slightly from 
the NDVI and NDRE-curves (Fig. 5). The correlation 

Fig. 4: Bray-Curtis-similarities along a gradient of  increasing spatial distance based 
on a pooled vegetation dataset of  all sites. Distance from 0-10 m up to 60-80 m show 
similarities within sites. Distance over >80 m represents similarities between sites.
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values were all similar, only site C showed higher vari-
ation in the comparison regarding the mantel correla-
tion for greater distances.

Linear models of the Mantel correlations of spec-
tral indices depending on the Mantel correlations of 
the vegetation had a high explanatory value (approx. 
75%) (Fig. 6). All three selected measures from the 
spectral data showed almost identical explanatory 
power in their linear models.

The 2-dimensional NMDS provides an overview 
of the floristic similarity of the sites and the individual 
records (Fig. 7). The sites are heterogeneous to vary-
ing degrees. While sites C and D appeared quite com-
pact, the point clouds of the records from sites A, B 
and E were more widely distributed along the first di-

mension. Since one unit on the axes corresponds to 
a half change, i.e., a species turnover of 50%, it can 
be concluded that the grassland sites were relatively 
similar to each other, as the centroids of the sites were 
less than one unit apart. The point clouds were mainly 
extended along the first axis. This axis corresponded 
to a soil moisture gradient from fresh to moist (linear 
fit of moisture indicator values: r² = 0.61, p < 0.01).

The sites were arranged along the second axis 
with varying degrees of overlap. This gradient corre-
sponded to a management gradient, as the sites are 
managed uniformly. The beta diversity within a site 
was usually about 25-50% species turnover (0.5- 1.0 
units). Site A had a maximum turnover of about 60% 
(1.5 units).

Fig. 5: Mantel-correlogram for each site (indicated in capital letters within each graph composition) for vegetation 
data and spectral indices. Filled symbols indicate significant values, no-fill symbols not significant values. In black 
the vegetation data is displayed, while the spectral data is indicated with different colours. 
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4 Discussion

All grasslands investigated in this study repre-
sent the habitat type “6510 Lowland hay meadows 
(Alopecurus pratensis, Sanguisorba officinalis), following the 
EU habitats directive. This habitat type is character-
ised by a high diversity of flowering plants and exten-
sive management. Its conservation status in Germany 

is classified as “unfavourable-bad”. In consequence, 
there is an urgent need for monitoring and restoration. 
The large areas covered by this habitat and the liabil-
ity for reporting makes remote sensing indispensable. 
The analysed landscape is heavily dominated by grass-
lands of varying management regimes and typical for 
central European managed grassland vegetation. The 
communities in the moist valley bottom of the inves-

Tab. 1: Mantel test and Mantel correlations of  vegetation data and spatial distances

(* p < 0.05; ** p < 0.01; *** p < 0.001)

S 
I 
T 
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    Distance class [m] 

Mantel Test 
5-15    15-25 

  
25-35 35-45 

  
45-55 55-65 

  
65-75 
  

A 0.389 *** 0.323 *** 0.185 ** -0.071 -0.149 * -0.187 * -0.106   -0.056   
B 0.203 * 0.195 ** 0.099   -0.078 -0.078   -0.083   -0.078   0.044   
C 0.339 *** 0.248 *** 0.143 * -0.095 -0.023   -0.017   -0.185   0.035   
D 0.336 *** 0.237 ** 0.075   0.066 -0.169 * -0.091   -0.149   -0.129   
E 0.487 *** 0.321 *** 0.253 ** 0.012 -0.241 ** -0.223 ** -0.199 * 0.038   
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Fig. 6: Mantel correlation of  spectral indices and vegetation data. The symbols represent the spectral indices 
(RGB, NDVI and NDRE). The lines indicate linear regression between spectral measures and vegetation 
data.
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tigation area are attributed to the phytosociological 
order Arrhenatheretalia. While management within the 
overall landscape differs, the grasslands investigated 
are all managed uniformly. Additionally, all sites ex-
hibit a similar species pool. This is a prerequisite for 
our study testing the potential of satellite imagery in 
detecting spatial autocorrelation.

All sites are contracted by the same conservation 
category (no fertilizer application, no mowing before 
the 15th of June). They are also comparable in terms 
of climate, elevation and soil types. Differences in 
species assemblages can be assigned to either spatial 
autocorrelation or other spatial dependencies, such as 
small-scale changes in relief (e.g., drainage ditches). 

We hypothesized that the spatial autocorrela-
tion present in the collected field data can also be de-
tected by Sentinel 2 satellite imagery. This was con-
firmed for a specific scale in the studied grasslands.  
Plots sampled more than 30 m apart from each oth-
er but still within the same piece of land are already 
considered spatially independent. This coincides with 
mEyErs et al. (2014) who found spatial autocorrelation 

in grasslands up to 40-80 m distance. Including individ-
ual species’ cover and applying Bray-Curtis-similarity 
yields a shorter range of spatial autocorrelation than 
expected from presence-absence data (see Podani & 
Csontos 2006) with values between 80 and 100 m range 
for autocorrelation) because cover is non-stationary.  
Negative Mantel correlations are likely to relate to 
moisture gradients within sites. The compact group-
ing of the site data in the ordination diagram indicates 
that one randomly selected vegetation record would 
be sufficient for the managed piece of land. However, 
moisture gradients do not hamper the comparability 
of the different sites, as spatial autocorrelation was 
found to be uniform along moisture and management 
gradients (see also mEyErs et al. 2014). The remaining 
scattering and variation within sites is due to inherent 
noise in vegetation samples.

We detected small variation in species assemblage 
in grasslands, that have the same environmental, cli-
matic and management conditions. In this study area, 
the observed heterogeneity in the vegetation data is 
related to moisture gradients within the sites (NMDS 
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Fig. 7: Ordination of  vegetation (two-dimensional NDMS, stress 0.19). Different colours and shapes repre-
sent the five 60 m x 60 m squares, drawn ellipses enclosing all recorded line transects.
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Dimension 1). This is confirmed by the species pre-
sent and their Ellenberg indicator values (found in 
the supplemental material) for moisture, respectively 
(WEsChE et al. 2012). 

Additionally, we observed spatial heterogeneity 
within sites despite the visually and agriculturally ho-
mogeneous vegetation lending further weight to criti-
cism regarding preferential sampling based on visual 
homogeneity of vegetation stands (ChiarruCi 2007, 
láJEr 2007). This internal heterogeneity in our sam-
pled vegetation is illustrated by Bray-Curtis distance 
values of 0.5 and is in line with PougEt et al. (2021) 
who found that even seemingly homogeneous mown 
grasslands have a level of high spatial heterogeneity.

Moreover, small-scale environmental differences 
can influence species richness patterns and assemblag-
es in grasslands (gazol et al. 2012), therefore, small 
distances can be significant for diversity patterns 
within grasslands (zhou et al. 2008). Additionally, 
micro- topographic heterogeneity is a known influ-
ence on plant species diversity (dEák et al. 2015). 
Furthermore, spatial autocorrelation can be genetical-
ly driven and was for example identified as the reason 
behind in synchronisation of flowering events (e.g. 
almEida-nEto & lEWinsohn 2004), which in turn 
may significantly influence the calculation of spectral 
vegetation indices (shEn et al. 2009). By detecting and 
excluding spatial autocorrelation, additional spatial 
gradients and patterns can be identified.

Non- explained variance in our study can result 
from distance to the river and occasional flooding, 
groundwater depth, or micro-topography. Those 
specific site conditions can be additionally relevant 
because of regular flooding of the Altmühl river in 
the winter months. Small depressions modify dwell-
ing times for the water increasing the importance of 
micro-topography changes for variance explanations.  
Even though most space borne remote sensing is used 
for large scale analyses (e.g., gould 2000, CooPs et al. 
2018, rECuEro et al. 2019), we show the applicability 
for the analysis of the grassland composition within 
one valley . We found that spectral indices as well as 
spectral variability (in relation to the combination of 
red, green and blue bands) exhibit a similar pattern of 
spatial autocorrelation compared to that of the in- situ 
sampled grassland vegetation. The correlation of the 
field data with the used spectral indices is strong. The 
regression of the Mantel correlation values on vegeta-
tion data explains around 75% of variation of the vari-
ance of the spectral indices.

Deviations between both could stem from sam-
pling design. The grids in the field were oriented along 
a north to south and east to west axis, while the pixels 

of the Sentinel-2 images are slightly rotated along the 
east-west axis. Field samples are not depicting exactly 
the same location as the satellite sensors. However, 
the aim was not to directly compare single pixel data 
from the Sentinel- image to information of an indi-
vidual 10 m² field sampling unit. Rather we aimed at 
comparing the differences with increasing spatial dis-
tances within the same management unit.

The NDRE uses the red edge which is highly cor-
related with chlorophyll content (Pinar & Curran 
1996) and is focused on the stress level of the vegeta-
tion (daWson & Curran 1998, BarnEs et al. 2000). 
The NDRE is known to outperform the NDVI in 
mid-to-late stages of plant developments as it is more 
sensitive to densities past the canopy cover, which is 
a well-known NDVI saturation problem (moriondo 
et al. 2007). However, in our study NDVI and NDRE 
perform equally. As these grasslands are mowed at 
the end of June and data was collected in August, the 
canopy density and the developmental age were still 
in a range, where the NDVI performs well and the 
advantages of the NDRE do not apply.

The almost interchangeable performance of 
NDVI and NDRE is an indicator for overall rela-
tively homogeneous environmental conditions, as the 
NDRE is more sensitive to small areas with different 
textures (JorgE et al. 2019). One major advantage of 
using the NDVI when relying on Sentinel-2 images 
is, that all the needed bands are in the same spatial 
resolution (10 m), while for the NDRE one band must 
be resampled from 20 m to 10 m resolution, which 
potentially decreases the accuracy and increases the 
margin for errors.

Generally, the spatial structures of grasslands are 
better depicted in NDVI and NDRE than in the RGB, 
representing the visible light spectrum. The suitability 
of spectral variability of the visible spectrum for the 
differentiation of the grassland composition is limited 
(Biró et al. 2024, ludWig et al. 2024).

Field data and the satellite data for this study were 
acquired during the same time (sampling in August 
2020, Satellite image from 9 Aug 2020). Therefore, ef-
fects of a time delay between field data and acquisition 
date of the Sentinel-2 image do not have to be consid-
ered. Our results suggest that spectral data can be used 
for assessing spatial autocorrelation in grassland. The 
application of remote sensing in detecting autocorre-
lation is only restricted by its resolution. In our study, 
the plot size of the field data matches the resolution 
of the Sentinel-2 images. This must be considered in 
future studies as well. In theory spatial autocorrelation 
can be continuously mapped but this can be biased by 
pixel size and the consequences for data smoothing 
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by coarse image resolution. This confirms theoretical 
considerations that remote sensing data can be taken 
as a proxy for the in-situ heterogeneity and species di-
versity of vegetation (Spectral Variation Hypothesis 
(SVH), PalmEr et al. 2002). Habitat heterogeneity as 
a proxy for species diversity has been recognized as a 
valuable tool in biodiversity research (roCChini et al., 
2010). However, a recent study (ludWig Et al. 2024) 
critically tested the potential of the SVH for grasslands 
and concluded while it works for some it does not hold 
true for all grasslands. Other studies found a strong 
positive correlation between NDVI and soil moisture 
levels indicating the potential of spectral indices de-
picting environmental gradients of habitat heteroge-
neity (e.g., ChEn et al. 2014, ahmEd et al. 2017). 

The results in this study confirm that two very 
well-known and established spectral indices (NDVI 
and NDRE) are suitable for the estimation of the 
spatial autocorrelation in grassland concerning the 
species combination even at a rather local scale and 
demonstrates that freely available data is sufficient for 
the analyses of spatial autocorrelation on a small scale. 
This applies even to grasslands that are managed in 
small pieces of land (1 - 2 ha). Sentinel- 2 data with its 
resolution of 10 m were successful in reflecting small 
scale differences in spatial autocorrelation, equally to 
cost and time intensive field work. 

5 Conclusion

Vegetation samples are a common source for 
analyses of species-environment relationships. They 
are the basis for decision making in conservation and 
management plans for endangered species and other 
environmental risk assessment. The statistical sound-
ness of those datasets is crucial and avoiding spatial 
autocorrelation within the dataset is necessary. 

We show that this important factor disrupting 
sound statistical analyses can be reliably detected via 
freely available satellite data. Fieldwork can be adjust-
ed a priori, avoiding issues in the analyses later. In this 
study, the spatial autocorrelation in the in-situ dataset 
showed an effect for not exceeding 30 m distances. 
This is true for all sites in the study area; its effects 
can therefore be neglected when analysing the data in 
similar landscapes if a minimum distance of 30 m be-
tween each sampling site is granted.

Employing satellite data for analysing the effects 
of spatial autocorrelation produced similar patterns 
as the in-situ data. The detected patterns showed the 
same trends as observed in the field data. This implies 
that a priori testing of necessary distances to avoid 

spatial autocorrelation issues in the analyses later can 
be provided via space-borne satellite imagery if reso-
lution size (remote sensing) and sampling size (field 
data) are in the same range. In this study, the freely 
available Sentinel-2 images with a resolution of 10 m 
proved to be sufficient. 
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A1: Ordination (NMDS) with an overlay of  mean Ellenberg indicator values moisture (blue lines)
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