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Summary: Citizen science (CS) and remote sensing (RS) approaches have become more reliable, thus providing higher 
resolution and generating a large amount of  environmental data. When considering urban environments, where fragment-
ed and highly diverse landscapes are predominant, the combination of  citizen science data and remote sensing techniques 
with species distribution models (SDM) can play a vital role in comprehensively investigating and evaluating urban biodi-
versity. However, citizen science derived species distribution models for multiple avian species in dense and fragmented 
urban areas are rarely used. The study aims (I) to elaborate, whether CS driven SDMs can be effectively used in spatially 
complex urban environments; (II) to identify biodiversity hotspots and prioritize areas for nature conservation and (III) 
to examine, if  existing protective areas correspond to species’ hotspots. Therefore, Citizen science-based datasets of  26 
breeding bird species over three years were obtained for this analysis in Germany’s Ruhr Metropolis. Quality assurance, 
data thinning, and pseudo-absence simulations were performed. Spatial data from the ecosystem LiDAR project GEDI 
(Global Ecosystem Dynamics Investigation), climate data from the German Weather Service, and land use informa-
tion from Copernicus were used as environmental predictors. Eleven different species distri-bution models (SDMs) were 
trained on species subselection by using Biomod2 for preliminary analysis. Overall model performance was evaluated via 
several metrics, including TSS (true skill statistics) and ROC (receiver operating characteristic). Finally, four species distribu-
tion models were used for ensemble modelling. Subsequently, a species richness analysis was performed with the aim of  
identifying spots with high avian biodiversity. Overall, the CS-derived SDMs performed well, with high predictive power 
for all of  the investigated species. Within the Ruhr Metropolis, approximately 6% (250 km²) of  the terrain was identified 
as being highly suitable for avian diversity, inhabiting at least 17 out of  26 species. Predominantly within the core urban 
areas, high species richness was predicted on preserved brownfields and revitalized mine sites, as well as in the remnants 
of  formerly demarcated regional greenbelts. Additionally, regions outside of  the core area, which are part of  the overarch-
ing biotope network framework, proved to have high species richness capabilities for avian biodiversity. These findings aid 
in optimizing urban development concepts and (sub)urban green space management with respect to urban biodiversity 
conservation. Following the implications of  the recently established Regional Biodiversity Strategy in the Ruhr Metropolis, 
this analysis demonstrates the importance of  networked green spaces, their preservation and the need to close existing 
network gaps within the Ruhr Metropolis.
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1 Introduction

The forthcoming decades are anticipated to 
experience the most significant decline in biodiver-
sity since the last mass extinction 65 million years 
ago (ipBes 2019). The swift expansion of urban hu-
man populations and their utilization of land, wa-
ter, timber, and energy, which commonly occur in 
biodiversity-rich areas, have been identified as being 
primary catalysts for these declines (elMqvist et al. 
2016). These urban areas are known as agglomer-
ates of complex spatio-temporal mosaics of differ-
ent habitat types and are characterized by various 
climate conditions, habitat compositions, and frag-

mented landscapes (pickett et al. 2008, lepcZyk et 
al. 2023). Consequently, conventional regional and 
urban planning typically overlooks biodiversity and 
nature within cities. However, at a frequent rate, con-
servation planning even disregards urban environ-
ments, with the presumption that they have mini-
mal-to-no biodiversity (Guerry et al. 2021).

However, in recent years, the perception of ur-
ban settlements as biodiversity threats and popu-
lation sinks has shifted (soanes & lentini 2019, 
Mcdonald et al. 2020, lepcZyk et al. 2023). Cities 
are even increasingly acknowledged as being hot-
spots due to their heterogeneous mosaics of open 
green spaces, forest relics, open water bodies, and 
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spontaneous vegetation. This recognition is accepted 
not only for endangered species (soanes & lentini 
2019, Mcdonald et al. 2020) but also for biodiver-
sity in general (knapp et al. 2021, spotswood et al. 
2021). A growing body of literature highlights the 
importance of various types of green infrastructure 
for biodiversity conservation, including their func-
tions as suitable habitats (dearBorn & kark 2010), 
landscape stepping stones (wu et al. 2022), and ref-
uges (lepcZyk et al. 2023). Nonetheless, open green 
spaces in cities and their surroundings are under 
pressure due to densification (haaland & van den 
Bosch 2015), urban development (spanGenBerG 
2007, Güneralp & seto 2013), and intensification 
of recreational usage (venter et al. 2020). 

To support cities in their conservational efforts 
to preserve biodiversity in urban areas and to iden-
tify beneficial landscapes and areas to prioritize for 
nature conservation, an understanding of the distri-
bution of species and the identification of biodiver-
sity hotspots are fundamental. 

Given the need for a preservation strategy for ur-
ban biodiversity, which was also recently demonstrat-
ed by the results of the newly established Regional 
Biodiversity Strategy for the Ruhr Metropolis (keil 
& herinG 2022) and the binding targets by the new-
ly established Nature Restoration Law (european 
coMMission 2022), more comprehensive approaches 
that consider landscape context and networks can 
contribute to the evaluation and delimitation of ex-
isting and future green spaces and conservational 
management (Zepp 2018). 

1.1 Bird species as biological indicators in urban 
areas

Ideally, the quality of urban green spaces that 
supplement and maintain biodiversity and their nec-
essary habitats should be evaluated in a quantitative 
manner. Therefore, taxa functioning as indicators 
for all levels of biodiversity, which are interconnect-
ed with the biotic community and which are relevant 
in terms of biodiversity, are favourable candidates 
for assessment (vallecillo et al. 2016). The com-
position of avian communities reflects variations in 
habitat structure, vegetation characteristics, and hu-
man activities (Fig. 1). Thus, urban environments 
present various challenges (but also opportunities) 
for avian species, leading to complex patterns of 
habitat selection. The array of bird species inhabit-
ing urban green spaces ranges from opportunistic 
urban adapters to highly specialized urban residents 

with specific habitat requirements. Their presence or 
absence, breeding success, and foraging behaviours 
serve as reliable indicators of habitat quality and 
ecological functionality within urban environments. 
Therefore, birds can be regarded as being an ideal 
research taxon (Mekonen 2017).

Birds occupy high trophic levels, with specific 
habitat and food requirements. They are easy to de-
tect, observe, survey, and monitor (vallecillo et al. 
2016); moreover, they function as flagships for na-
ture conservation (sMith & sutton 2008, veríssiMo 
et al. 2014). Additionally, the distribution of bird 
species reflects that of other taxa with similar re-
quirements in the same habitat (eGlinGton et al. 
2012). As birds are highly mobile, they quickly re-
act to changing environmental conditions by disap-
pearing (Mekonen 2017). Due to the fact that they 
are directly and indirectly influenced by the urban 
environment, their distribution can be modelled by 
selecting drivers of habitat selection in urban areas 
(isaksson 2018). Several biotic and abiotic factors 
drive the habitat selection process, including param-
eters such as habitat structural richness (donnelly 
& MarZluff 2006, huanG et al. 2015), urban climat-
ic anomalies (cai et al. 2023), predation risk, food 
availability and anthropogenic disturbances from 
noise, light pollution, and general human presence 
(ciach & fröhlich 2017).

Different bird species often exhibit different 
preferences for habitat features, such as vegetation 
density, patch size, and proximity to water sources, 
which can provide suitable nesting sites and forag-

Fig. 1: Drivers of  avian habitat selection in urban areas 
(based on Isaksson 2018)
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ing opportunities (hildén 1965). Additionally, the 
availability of resources, such as insects, seeds, and 
fruits, influences habitat selection, with some species 
showing adaptability to anthropogenic food sources 
such as bird feeders or food waste (ottoni et al. 
2009). Moreover, the level of predation risk, which is 
influenced by factors such as the presence of preda-
tors and human activities, shapes habitat selection 
patterns; however, bird community composition (ur-
ban filter), such as the presence of birds, balances the 
trade-off between foraging opportunities and escape 
distance and is influenced by environmental, biotic, 
and anthropogenic filters determined by urban envi-
ronments (aronson et al. 2016).

1.2 The concept of  species distribution models

Species distribution models (SDMs) represent 
tools in ecological research that aid scientists in 
understanding and predicting the spatial distribu-
tion of various organisms across diverse landscapes 
(hernandeZ et al. 2008). This concept involves the 
use of environmental variables to model potential 
habitats or geographical ranges that a given spe-
cies may inhabit (Guisan et al. 2017). The initial 
definitions of the ecological niche were introduced 
by elton (1927) and Grinnell (1928). Grinnell 
(1928) defined the niche as the specific place a spe-
cies occupies in the environment. In contrast, elton 
(1927) emphasized the functional role a species plays 
and its impact on the community. Both Grinnell’s 
and Elton’s definitions linked niches to environ-
ments. However, hutchinson (1957, 1978) attrib-
uted the niche to the species itself, a definition that 
has become the most widely used and a fundamental 
concept in SDM theory. hutchinson (1957) defined 
the fundamental niche as the sum of all physical and 
biological variables required for a species to persist. 
He accounts for competition and other negative in-
teractions between individual species and within the 
environment. Thus, ecologists generally attribute 
the difference between the size of the fundamental 
and actually realized niches to negative interactions 
such as competition. With the years also positive in-
terspecific interactions (Bruno et al. 2003), dispersal 
abilities (pulliaM 1988) and movement capacities of 
species (hanski 1998) were incorporated in the un-
derstanding how the realized niche of species within 
a certain area are determined.

In recent years, the subsequent integration of 
advanced computational techniques, ecological the-
ories and geoinformatics has significantly enhanced 

the precision and applicability of SDMs (he et al. 
2015, valavi et al. 2022). In general, SDMs are based 
on the principle that the distribution of a species is 
intricately linked to environmental factors which 
determine the potential of the species to occupy 
certain habitat types (Guisan & thuiller 2005). 
SDMs became indispensable tools in ecology and 
conservation biology for predicting the geographic 
distribution of species for large areas (Miller 2010, 
randin et al. 2020). Currently, RS data have revo-
lutionized the field of landscape and animal ecol-
ogy by providing spatially explicit environmental 
information at various scales (rouGhGarden et al. 
1991, cavender-Bares et al. 2022). By that, remote 
sensing (RS) data already contribute to improve and 
accelerate the modelling and prediction of species’ 
distribution in various ways (randin et al. 2020). 
Additionally, the emergence of citizen science initia-
tives has enabled the collection of species presence-
only data on a larger scale, thus complementing 
and even replacing traditional (but scarce) survey 
data (steen et al. 2019). Despite their individual 
strengths, the combination of remote sensing and 
citizen science data might be a potent approach to 
enhance the applicability and predictive capacity of 
SDMs when used in urban environments (randin 
et al. 2020).

1.3 Challenges of  avian biodiversity research in 
the Ruhr Metropolis

Currently, fundamental research on avian bio-
diversity within the urban boundaries of the Ruhr 
Metropolis is scarce and has primarily focused on 
certain species (kowallik & rautenBerG 2014) or 
on locations and land use aspects (haMann 1991, 
keil 2019). This focus hinders the identification 
of contributions and the importance of green space 
networks for species, as well as the analysis of re-
gional biodiversity hotspots (enGler et al. 2017).

A broader research scope, which is necessary 
to prioritize nature conservation areas and their 
inherent biodiversity-relevant landscape structures, 
is lacking due to several constraints. These include 
financial and staff support limitations, time restric-
tions, and a lack of acknowledgement for urban bio-
diversity in policy, as recognized by the Regional 
Biodiversity Strategy Ruhr Metropolis (keil et al. 
2021). As such constraints impede methods that rely 
on exhaustive field surveys and mapping, modelling 
species distributions using widely reported presence-
only species records and freely available RS data and 
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their derivates has the potential to identify impor-
tant areas for biodiversity in the Ruhr Metropolis.

Therefore, the utility of SDMs is mainly lim-
ited by the existence of reliable species occurrence 
data and spatially explicit environmental data. 
Typically, extensive survey data on taxa in urban 
areas are seldom available. However, the sub-
stantial amount of unstructured data reported by 
citizens, so called Citizen Science (CS) data, can 
provide a remedy in this scenario. Preconditions 
in urban areas are advantageous due to the high 
concentration of active reporters (dachverBand 
deutscher avifaunisten 2018).

The Ruhr Metropolis has developed a unique 
and specific biodiversity which stems from a com-
bination of its historical development, specific lo-
cation, and unique transformations (keil et al. 
2013). By proactively preserving and encompass-
ing industrial brownfields into green infrastructure 
(knapp 1998, anGelo 2019), the study area serves 
as a prime example for analysing its significance for 
and contribution to urban biodiversity. These dis-
tinct inner-city industrial wastelands with charac-
teristic biocoenoses (‘industrial nature’), large areas 
of succession, hydromorphic subsidence areas and 
the location at the interface between low mountain 
ranges and lowlands give the biodiversity of the 
Ruhr Metropolis its very own characteristics (keil 
2019). The variety of habitats in a small area leads 
to a high diversity of species that is far more pro-
nounced and led to a development of biotic com-
munities that do not exist in near-natural habitats. 
At the same time, the range of pressures and threats 
to biodiversity in the Ruhr region is particularly 
wide: land-use changes and structural change with 
high land requirements are increasingly leading to 
the disappearance of characteristic biotic commu-
nities. Contaminations in soils and water bodies 
are usual remnants and the density of traffic routes 
and sealed surfaces exceptionally high compared 
to other regions in Europe (keil & herinG 2022). 
Global phenomena such as climate change, insect 
decline, and structural and financial deficits in na-
ture conservation are also relevant to the Ruhr re-
gion and are even more pronounced than elsewhere 
(keil et al. 2021). 

By considering the current challenges and ex-
isting research gap within the Ruhr Metropolis, we 
conducted a study encompassing the entire Ruhr 
Metropolis and including multiple bird species to 
address the limitations of site- and species-specif-
ic considerations. Therefore, we used CS-derived 
SDMs in combination with environmental data to 

predict the occurrence of 26 endangered avian spe-
cies (Tab. 1) in the Ruhr Metropolis based on data 
from breeding periods over three consecutive years 
between 2019 and 2021. The objectives of this study 
were as follows:
• To elaborate, whether the combination of CS 

and RS with SDMs can be effectively used to 
predict species distributions in spatially com-
plex urban environments; and

• to identify biodiversity hotspots and prioritize 
areas for nature conservation within the urban 
environment.

• To examine, to what extent the existing net-
work of protected areas overlays with species’ 
hotspots

2 Materials and methods

2.1 Study area

The current study was conducted within the 
Ruhr Metropolis, which is located in North Rhine-
Westphalia, Germany. The Ruhr Metropolis is sit-
uated in the western part of Germany in Central 
Europe and encompasses an area of approximately 
4500 km2 (Fig. 2). With its approximately five mil-
lion inhabitants, it stands as the fifth largest con-
urbation in Europe. Extending from the Lower 
Rhine Basin in the west to the Westphalian Plain in 
the north and the Rhenish Massif in the south, the 
Ruhr Metropolis boasts a polycentric and adminis-
tratively fragmented structure. Formerly known for 
coal mining and heavy industry, an ongoing trans-
formational change towards a knowledge-based so-
ciety is currently leading to severe land use changes. 
Divided into a densified core area (2,280 inhabit-
ants per km²) and a more scattered surrounding 
area dominated by settlement, agriculture and for-
est patches, the Ruhr Metropolis embodies a di-
verse and dynamic urban area (reGionalverBand 
ruhr 2021).

Hence, the core of the Ruhr Metropolis is well 
endowed with blue and green infrastructure, such 
as parks, meadows, ponds, small woods and reser-
voir lakes (Zepp et al. 2020). The entire area is in-
terspersed with a green space network that has been 
prioritized for nature conservation. Predominantly, 
the green space network is outlined by the higher-
level rivers Rhine, Ruhr and Lippe in the periphery 
of the core area and within the core area by the 
formerly defined old greenbelts and the Emscher 
River.
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2.2 Species distribution modelling

In this study, we employed a comprehensive 
workflow (Fig. 3) to integrate CS- and RS-derived 
data sources into SDMs.

The workflow encompasses the steps of data 
preselection and processing, variable selection, 
model training, and validation, all of which are tai-
lored specifically for presence-only occurrence data 
of rare species. Modelling species distribution was 
finally done within the biomod2 package (thuiller 
et al. 2023). 

2.2.1 Citizen science species occurrence datasets

CS datasets from ornitho.de (DDA e.V., www.
ornitho.de) were utilized to generate presence-only 
records for modelling. The database ornitho.de is a 
nationwide platform in Germany, which enables 
citizens to report bird observations throughout 
the country. It is regarded as the most comprehen-
sive and extensive database for bird observations in 
Germany. Citizens have the option to either report 
observations as incidental (unstructured) records or 
perform a semi-structured approach by submitting 

Scientific Name Common Name Abbr.
Records 

pre-
thinning

Records 
post 

thinning

Mean

TSS ROC Bias Boyce Specificity Sensitivity

Accipiter gentilis Northern Goshawk AccGen 561 253 0.70 0.91 0.99 0.70 0.83 0.87

Accipiter nisus Eurasian Sparrowhawk AccNis 951 386 0.64 0.87 0.99 0.64 0.80 0.84

Acrocephalus scirpaceus Eurasian Reed Warbler AcrSci 985 189 0.79 0.95 0.99 0.79 0.88 0.92

Alauda arvensis Skylark AlaArv 2086 325 0.73 0.92 0.99 0.73 0.83 0.90

Anthus pratensis Meadow Pipit AntPra 1111 253 0.73 0.92 0.99 0.73 0.85 0.89

Anthus trivialis Tree Pipit AntTri 924 230 0.77 0.94 0.99 0.77 0.86 0.92

Ardea cinerea Grey Heron ArdCin 4131 730 0.61 0.86 0.99 0.61 0.77 0.84

Buteo buteo Common Buzzard ButBut 4403 1047 0.54 0.82 0.99 0.54 0.77 0.77

Carduelis cannabina Eurasian Linnet CarCan 1791 395 0.67 0.89 0.99 0.67 0.82 0.84

Charadrius dubius Little Ringed Plover ChaDub 2261 218 0.83 0.96 0.99 0.83 0.90 0.93

Corvus frugilegus Rook CarFru 1131 192 0.82 0.96 0.99 0.82 0.88 0.95

Cuculus canorus Common Cuckoo CucCan 1467 396 0.74 0.93 0.99 0.74 0.85 0.89

Delichon urbicum Common House Martin DelUrb 2034 508 0.63 0.87 0.99 0.63 0.80 0.83

Dendrocopos medius Middle Spotted Woodpecker DenMed 307 177 0.80 0.95 0.99 0.80 0.88 0.93

Dryobates minor Lesser Spotted Woodpecker DryMin 197 106 0.89 0.98 0.99 0.89 0.93 0.96

Falco subbuteo Eurasian Hobby FalSub 561 187 0.77 0.94 0.99 0.77 0.87 0.90

Falco tinnunculus Common Kestrel FalTin 3359 865 0.56 0.83 0.99 0.56 0.77 0.79

Hirundo rustica Barn Swallow HirRus 3628 780 0.60 0.85 0.99 0.60 0.78 0.82

Lullula arborea Wood Lark LulArb 361 89 0.96 0.99 1.00 0.96 0.97 0.99

Luscinia megarhynchos Common Nightingale LusMeg 1756 392 0.76 0.93 0.99 0.76 0.84 0.91

Milvus milvus Red Kite MilMil 1837 740 0.59 0.85 0.99 0.59 0.77 0.82

Passer montanus Eurasian Tree Sparrow PasMon 445 90 0.92 0.99 1.00 0.92 0.95 0.98

Phoenicurus phoenicurus Common Redstart PhoPho 1132 367 0.67 0.89 0.99 0.67 0.83 0.84

Streptopelia turtur European Turtle Dove StrTur 134 39 0.97 1.00 0.99 0.97 0.97 1.00

Sturnus vulgaris Common Starling StuVul 3181 646 0.60 0.86 0.98 0.60 0.78 0.82

Vanellus vanellus Northern Lapwing VanVan 2833 287 0.76 0.94 0.99 0.76 0.87 0.89

Tab. 1: Number of  occurrences (records) derived from CS. Datasets for the 2019-2021 breeding season (Apr. to Jul.) for the inves-
tigated bird species (source: ornitho.de) before and after spatial thinning. Additionally, mean values for TSS, AUC, bias, and the Boyce 
index were calculated for all of  the algorithms performed per species. Additionally, the mean specificity and mean sensitivity over the 
TSS and ROC curve are depicted.
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Fig. 2: Characterization of  land use within the Ruhr Metropolis based on WorldCover land use classification (Zanaga et al. 2022) 

Fig. 3: Workflow for species distribution modelling with biomod2
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a complete checklist of observations for a specific 
location. Both types of data are assigned to precise 
coordinates or are allocated to the centre of a grid 
cell with an approximately 1 km x 1 km raster size. 
From all of the recorded species, including semi- and 
unstructured data, we selected 26 species (Tab. 1), 
which are collectively referred to as species relevant 
for planning (kiel 2005) because they are known to 
be vulnerable to urbanisation in the form of land 
sealing, densification and conversion of natural or 
semi-natural areas. Additionally, 19 out of these 26 
species are listed in the Red List of North Rhine-
Westphalia (sudMann et al. 2023), 16 are in catego-
ries 1-3 (threatened by extinction, severely threat-
ened, or threatened). We included several orders of 
birds, including (but not limited to) waders, passer-
ines, woodpeckers, and different orders of birds of 
prey. Species of these orders differ in habitat prefer-
ences based on landscape composition requirements, 
as well as climate preconditions and habitat structure 
needs (hildén 1965).

2.2.2 Data preprocessing and pseudo-absence data

All of the data were processed by using basic R, 
version 4.2.2 (r core teaM 2022), unless otherwise 
specified. To enhance reliability, we conducted data 
preprocessing. We included only species data re-
cords from three consecutive years (2019 to 2021) 
to align precisely with available local climate and 
RS datasets. To avoid distortions in habitat selection 
analysis due to migratory patterns, we confined our 
data to records from April to July, which represents 
the main breeding season for all bird species under 
study in North Rhine-Westphalia (südBeck et al. 
2005). Additionally, we only included records with 
a reported breeding code in that specific timespan 
(keller et al. 2020). To avoid underestimating the 
occurrence of rare and difficult to detect species we 
did not discard category A (possible breeding). By in-
corporating both, breeding codes and restriction on 
breeding time we minimize possible misattributions 
throughout the years and better align the occurrenc-
es to the climate predictors of the breeding season.

Subsequently, we used the R package spThin (ver-
sion 0.2.0) (aiello-laMMens et al. 2015) to thin the 
species presence-only datasets and to reduce spa-
tial autocorrelation where necessary (toBler 1970, 
leGendre & fortin 1989). However, thinning data-
sets of rare species with few records may lead to an 
incomplete representation of the species’ ranges, de-
creased model performance and suboptimal sample 

sizes (Guisan et al. 2017, coudun & GéGout 2006, 
JiMéneZ-valverde et al. 2009, steen et al. 2021). To 
address species-dependent spatial autocorrelation 
and unbalanced thinning, we computed the range of 
the semivariogram for each species dataset by using 
a spherical model (fletcher & fortin 2019, BeBBer 
1999). The range of the semivariogram computed 
with the R package gstat (peBesMa 2004) was then 
used as the range input in spThin to thin each corre-
sponding species dataset (Fig. 4 and Tab. 1).

In accordance with the current literature recom-
mendations regarding pseudo-absences for different 
modelling algorithms (BarBet-Massin et al. 2012) 
and following guidance from biomod2 developers 
(thuiller et al. 2023), we standardized the num-
ber of pseudo-absences for each algorithm based on 
three times the number of presences post-thinning 
(Tab. 1). Each raster cell, which is equipped with a 
presence record, is excluded from pseudoabsence 
generation. To mitigate potential misallocation is-
sues, multiple independent pseudo-absence datasets 
should be utilized for each species. As SDMs inher-
ently over- or underpredict species’ ranges according 
to prerequisites and assumptions made in generating 
pseudo-absence data. Also, density and arrangement 
of occurrence and pseudo-absence data affect model 
results and transferability as many studies highlight-
ed lately (BarBet-Massin et al. 2012, GriMMett et 
al. 2020). The generation and thinning methods are 
highly dependent on the research question. Here, 
we aim to examine the fundamental niche of each 
species in the study area. To determine the overall 
habitat each corresponding species may inhabit an 
overprediction bias is preferably over an underesti-
mation of the occurrence range. Thus, we chose ten 
independent randomly distributed pseudo-absence 
dataset iterations within the whole study area rather 
than using a disk or buffer approach which restricts 
the generation of pseudo-absences to a certain area 
around the presences or favourable environmental 
conditions (Márcia BarBosa et al. 2013, thuiller et 
al. 2023, whitford et al. 2024). 

2.2.3 Environmental predictors

Climate raster data from the German Weather 
Service (DWD) were used to calculate bioclimatic 
variables (Tab. 2). The climate datasets are a syn-
thesis of weather station data and RS supported in-
terpolations to create complete raster datasets. We 
incorporated data for the referenced breeding pe-
riod (April to July) spanning from 2019 to 2021. A 
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subset of these variables served as climatic explan-
atory variables reflecting known influencing factors 
on the habitat selection of birds. Maximum and 
minimum temperature (bio5 and bio6), as well as 

maximum and minimum precipitation (bio14 and 
bio16) determines physiological limits, breeding 
success, range, and foraging behaviour (root 1988, 
thoMas et al. 2004, JiGuet et al. 2006). In addition, 

Sturnus vulgaris Vanellus vanellus

Milvus milvus Passer montanus Phoenicurus phoenicurus Streptopelia turtur

Falco tinnunculus Hirundo rustica Lullula arborea Luscinia megarhynchos

Delichon urbicum Dendrocopos medius Dryobates minor Falco subbuteo

Carduelis cannabina Charadrius dubius Corvus frugilegus Cuculus canorus

Anthus pratensis Anthus trivialis Ardea cinerea Buteo buteo

Accipiter gentilis Accipiter nisus Acrocephalus scirpaceus Alauda arvensis
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black borders represent core area and extent of the 
Metropolis Ruhr.

Fig. 4: Records after thinning of  the investigated 26 avian species
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we considered data on potential and real evapo-
transpiration (bio20 and bio21). Evapotranspiration 
is directly linked to water availability and capacity in 
ecosystems, reflecting vegetation and habitat quality 
status, resource availability and microclimate condi-
tions (Zepp et al. 2023, syMonds & Johnson 2008). 
We further integrated land surface characteristics 
(Tab. 2) and height information to be known for 
their direct impact on habitat selection and struc-
ture of species in urban areas (ferenc et al. 2014, 
Blair 1996). Height information was retrieved from 

GEDI LiDAR datasets (duBayah et al. 2021a) which 
were computed in Google Earth Engine (Gorelick 
et al. 2017) and subjected to Kriging interpolation 
to generate a digital surface model (DSM). Data on 
imperviousness (SEAL) (european environMent 
aGency 2020a) and tree cover density (TCD) 
(european environMent aGency 2020b) were ob-
tained from Copernicus Land Cover Monitoring. 
Finally, land use information was sourced from 
the ESA WorldCover based on 2021 (ZanaGa et al. 
2022).

Code Covariate Definition
Time  

Resolu-
tion

Scale Original 
Resolution

Resampling 
Method Source

bio5 Maximum temperature in breeding periods monthly 
mean 102 °C 1x1 km cubic dwd cliMate data 

center n.d. a

bio6 Minimum temperature in breeding 
periods

monthly 
mean 102 °C 1x1 km cubic dwd cliMate data 

center n.d. b

bio14 Minimum precipitation in breeding 
periods

monthly 
sum

millime-
tres 1x1 km cubic dwd cliMate data 

center n.d. c

bio16 Maximum precipitation in breeding 
periods

monthly 
sum

millime-
tres 1x1 km cubic dwd cliMate data 

centern.d. c

bio20 Potential evapotranspiration in breeding 
periods

monthly 
mean

10² milli-
metres 1x1 km cubic dwd cliMate data 

center n.d. e

bio21 Real evapotranspiration in
breeding periods

monthly 
mean

10² milli-
metres 1x1 km cubic dwd cliMate data 

center n.d. d

SEAL Imperviousness static 0-100% 100x100 m cubic european environMent 
aGency 2020a

TCD Tree cover density static 0-100% 100x100 m cubic european environMent 
aGency 2020b

GEDI Global Ecosystem Dynamics Inves-
tigation height information

multiple 
dates across 

years
meters Point data cubic duBayah et al. 2021b

p_forest Proportional contribution of  forest class to 
each 1x1 km grid cell static 0-1 10x10 m AGG ZanaGa et al. 2022

p_shrub Proportional contribution of  forest 
class to each 1x1 km grid cell static 0-1 10x10 m AGG ZanaGa et al. 2022

p_grass Proportional contribution of  grass-
land class to each 1x1 km grid cell static 0-1 10x10 m AGG ZanaGa et al. 2022

p_crop Proportional contribution of  crop-
land class to each 1x1 km grid cell static 0-1 10x10 m AGG ZanaGa et al. 2022

p_built Proportional contribution of  built-up area 
class to each 1x1 km grid cell static 0-1 10x10 m AGG ZanaGa et al. 2022

p_soil Proportional contribution of  bare 
soil class to each 1x1 km grid cell static 0-1 10x10 m AGG ZanaGa et al. 2022

p_water
Proportional contribution of  perma-
nent water surface class to each 1x1 
km grid cell

static 0-1 10x10 m AGG ZanaGa et al. 2022

p_wetland Proportional contribution of  wet-
land class to each 1x1 km grid cell static 0-1 10x10 m AGG ZanaGa et al. 2022

Tab. 2: Covariate variables for SDM perfomance

Note: Variables highlighted in italics were excluded for SDM after pairwise Pearson correlation and stepwise VIF. AGG = aggregation.
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Where necessary, data were resampled via cu-
bic convolution for continuous data to a 1x1 km 
grid cell size (Tab. 2) by using the Whitebox r pack-
age (lindsay 2016). We chose cubic convolution over 
other methods, such as bilinear interpolation, for 
continuous datasets due to its higher predictive ac-
curacy for point and raster image resampling (keys 
1981, sMith et al. 2004). We disaggregated the land 
use categories that were applicable to the study area 
into eight distinct layers. After aggregating 10,000 
10x10 m raster cells, each 1x1 km cell represents the 
proportional aerial contribution of a specific land use 
class. The applied minimum and maximum values 
per grid cell reflect the absolute measured climatic 
parameters over the span of three consecutive years. 
To account for multicollinearity, we performed a 
pairwise Pearson correlation and computed the vari-
ance inflation factor (VIF) of each pair of variables 
(Fig. A1). Due to the fact that variables with a high 
correlation may lead to unstable estimates in SDMs, 
we only retained variables with a Pearson correlation 
≤ 0.5 and a stepwise variance inflation factor (VIF) 
≤ 3 to exclude moderately to highly correlated covari-
ates for further analysis (kock & lynn 2012, naiMi 
& araúJo 2016). Thus, from the initially selected cli-
matic variables, the maximum temperature (bio5) and 
both evapotranspiration datasets (bio20, bio21) were 
removed. Moreover, p_forest and p_built were also 
omitted because they represent land use-derived vari-
ables. Ultimately, three bioclimatic variables and nine 
land use-derived variables were selected for inclusion 
in the SDM analyses (Tab. 2).

2.2.4 SDM construction, evaluation and selection

We used a multiple modelling approach that is 
available within the biomod2 package to individually 
build presence-only SDMs for all 26 species (Tab. 1), 
thus associating species occurrences with the prior se-
lected environmental predictors (Guisan et al. 2017).

Eleven different modelling algorithms were used 
to capture the broad variability in statistical behav-
iour and algorithm categories (Fig. 3) (Meller et al. 
2014). Algorithms can be categorized as regression-
based, machine learning, enveloping, and classifi-
cation-based algorithms, whereas some algorithms 
combine the categories (Tab. 3). Regression-based 
algorithms generate linear and nonlinear equations 
between presence-absence data and environmental 
predictors. Machine learning algorithms directly 
generate environmental spaces using all of the pro-
vided input datasets. Classification algorithms suc-
cessively divide data into homogeneous partitions, 
whereas enveloping methods investigate provided 
environmental conditions at the location of pres-
ence–absence data and search for similar grid cells 
(Merow et al. 2014).

To determine the most effective models, we 
performed a preliminary analysis by using the meth-
odology of carroll et al. (2023) on all modelling 
algorithms that were implemented in the biomod2 
package. We selected four representative species cov-
ering different habitat preferences, sample sizes and 
differences in commonness and behaviour (Fig. A2). 
We retained four out of eleven models due to their 

Tab. 3: Investigated SDM algorithms in the biomod2 package with method references

Note: Dismissed models for modelling are highlighted in italics.

Code Algorithm Category Model reference

GLM Generalized linear model Regression-based MccullaGh 1984, venaBles & ripley 2011
GBM Generalized boosted model Machine-learning ridGeway 1999
GAM Generalized additive model Regression-based hastie & tiBshirani 1986, yee & Mitchell 1991

CTA Classification tree analysis
Classification/

Machine-learning
BreiMan et al. 1984

ANN Artificial neural network Machine-learning ripley 2008, hilBert 2001
SRE Surface range envelope Enveloping BusBy 1991
FDA Flexible discriminate analysis Classification hastie et al. 1994

MARS
Multivariate adaptive

regression splines
Regression-based/
Machine-learning

elith & leathwick 2009, friedMan 1991

RF Random Forest Machine-learning BreiMan 2001
MAXNET Maximum Entropy Machine-learning phillips et al. 2006
XGBOOST Extreme Gradient Boosting Machine-learning chen & Guestrin 2016
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better predictive performance for a majority of the 
pretested species (Tab. 3). These models include the 
generalized boosted model (GBM), generalized addi-
tive model (GAM), random forest (RF) and extreme 
gradient boosting (XGBOOST).

For spatial cross-validation and to achieve a re-
duction in spatial sample bias (valavi et al. 2019), we 
applied the block method adapted from the blockCV 
package recently implemented in the biomod2 pack-
age. This method partitions data into four separate 
bins. The bins are selected by splitting the dataset 
based on the lines of latitude and longitude, which 
equally divides the occurrences (Muscarella et al. 
2014). The block method reduces data dependencies 
and spatial autocorrelation, thus offering advantages 
over random cross-validation methods (roBerts et 
al. 2017). In alignment with prior research recom-
mendations, multiple test statistics were used to pro-
vide a more robust assessment of model performance 
and to validate model responses (Guisan et al. 2017, 
2021, Baker et al. 2024).

Thus, model performance was evaluated by using 
the area under the receiver operating characteristic 
curve (ROC), true skill statistic (TSS), frequency bias 
index (bias), and continuous Boyce index (hirZel 
et al. 2006). The AUC (area under the curve) value 
of ROC method is known to be an effective mea-
sure for evaluating the performance of ordinal score 
models and additionally serves as a threshold-inde-
pendent measure of accuracy (Guisan & thuiller 
2005). The ROC index (ranging from 0 to 1 = highly 
accurate prediction) defines the probability that an 
SDM will rank a presence locality higher than a pseu-
do-absence. Nevertheless, the ROC value is highly 
ineffective when it comes to presence-pseudoab-
sence models as a stand-alone metric, being strongly 
influenced by the amount of pseudoabsence points 
generated (loBo et al. 2008, whitford et al. 2024). 
TSS is a threshold-dependent measure of accuracy. 
The TSS ranges between -1 and 1. Moreover, it tests 
the agreement between the expected and observed 
distributions and the probability of the outcome 
being predicted by chance alone (allouche et al. 
2006). TSS values of +1 are considered to indicate 
perfect agreement between the observed and expect-
ed distributions. Values below 0 indicate that the pre-
dictive performance of the models is no better than 
random (fieldinG & Bell 1997). We selected the 
TSS over Cohen’s kappa statistic due to its robust-
ness against prevalence (allouche et al. 2006). Bias 
is the ratio of the frequency of valid forecasts to the 
frequency of valid observations. It indicates wheth-
er the model predictions have a tendency to under- 

(bias <1) or overpredict (bias >1) (wunderlich et al. 
2019). The Boyce index is a presence-only evaluation 
method that measures a model’s ability to predict 
distributions other than random distributions of ob-
served presences across prediction gradients (Boyce 
et al. 2002). On a scale from -1 to +1, positive values 
indicate consistent models. Values close to zero in-
dicate random predictions, whereas negative values 
indicate counter predictions (hirZel et al. 2006). 
By that, the Boyce index measures the model’s hab-
itat suitability after it has projected into geographic 
space, making it an appropriate method for evaluat-
ing the model’s transferability outside of its training 
extent (petitpierre et al. 2017).

2.2.5 Ensemble model arrangement and binary 
transformation

For ensemble modelling (EM), only models ex-
ceeding the thresholds of TSS > 0.5 and ROC > 0.7 
were considered. After threshold filtering, all of the 
SDM algorithms were combined in an EM to assess 
model congruence and improve model accuracy (Fig. 
3). For each species, one individual EM was com-
puted. For the EM output, we used a committee av-
eraging (CA) algorithm. CA is both a predictive dis-
tribution model and a measure of uncertainty. The 
CA approach uses thresholded binary predictions 
that are individually calculated for each species and 
across all applied models to predict species presence 
(1) or absence (0). Raster cells with values between 
0 and 1 show a ratio of uncertainty in the EM defi-
nition of species presence-absence (caruana et al. 
2004). EMs were evaluated by using specificity and 
sensitivity metrics. Specificity refers to the propor-
tion of true positives that are correctly identified, 
whereas sensitivity accounts for the proportion of 
true-negatives that are correctly identified (negative 
refers to pseudoabsences instead of real absences in 
the case of presence-only data). Both test variables 
are reported as percentages and represent the accu-
racy of the prediction of EMs. Higher EM values cor-
respond to a better ability of EM to predict the real 
occurrence or absence of each species (allouche et 
al. 2006, liu et al. 2011).

For species richness analysis, binary transfor-
mations of all of the EMs were performed. By ap-
plying a species-specific value maximizing TSS 
along different thresholds (maxTSS) for the raster 
values obtained from the CA, each EM output was 
transformed into a binary presence-absence map 
(allouche et al. 2006). All of the grid cells with val-
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ues above the species-specific threshold were treated 
as suitable, and all of the grid cells with values be-
low the threshold were treated as not suitable. After 
transformation, all of the species grids were overlaid 
to perform species richness analysis (scott et al. 
1987, Gotelli & colwell 2001). The calculation of 
quantiles was performed by using the terra package 
(hiJMans 2022).

3 Results

3.1 Main drivers of  bird distribution in the Ruhr 
Metropolis

For all 26 considered species, all models per-
formed well, with a mean ROC ≥0.82 (Fig. 5a) and 
a TSS ≥0.54 (Fig. 5b).

An exception is represented by Streptopelia turtur. 
The small number of available species occurrence 
points indicated that the GAM algorithm could not 
produce successful calculations, as the model splits 
surpassed the number of available presence records 

(Fig. A3a, A3b). Despite this exception, the other 
models achieved good predictive performance. 
Species exhibited differences in model accuracy 
across all of the models and between TSS and ROC 
(Tab. 1 and Fig. A3a, A3b). Models for birds of prey, 
such as Buteo buteo, Milvus milvus and Falco tinnuncu-
lus, showed lower performance than did models for 
larks or woodpeckers and exhibited a greater degree 
of variability across different model iterations. 

The sensitivity and specificity for species’ EMs 
were ≥0.77, thus suggesting that the ensemble mod-
els correctly classified the presence and absence 
of multiple species. All of the SDMs yielded bias 
scores near 1, thus indicating an unbiased predic-
tion in which the predicted occurrence is forecasted 
almost exactly as often as it has been observed. The 
mean continuous Boyce index ranged from 0.54 to 
0.97, thus showing an overall consistency of the pre-
sent predictions with the distribution of presences 
in the evaluation dataset (Tab. 1) and hints that the 
models perform well beyond training extent. 

Variable importance varied greatly across spe-
cies and variables, but in general precipitation, tem-

Fig. 5: Model performance metrics (a) ROC and (b) TSS individually per species over each of  the model algorithms and runs
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perature and the land use proportions for grassland, 
water and wetland had higher importance than 
others across all four applied algorithms (Fig. A4). 
Species individual predictions (Fig. 6) showed a 
greater dependence of water bound birds (Tab. A1) 
on p_water and p_wetland. Ground-close breeding 
grassland bird species were relying predominately 
on p_grass and p_soil. Height information from 
GEDI and the proportion of shrubland showed to 
have less importance for predictions for the ma-
jority of all species. Sealing intensity showed only 
importance for forest breeding birds. Especially 
model predictions on species associated to urban 
surroundings showed a greater dependence on tem-
perature (bio6).

3.2 Distribution of  species richness and identifi-
cation of  biodiversity hotspots

The combined map of all of the species pres-
ence/absence results from binary transformation 
and details on the frequency distribution of grid cells 
by total species richness (TSR) with the contribution 
of each TSR quantile are presented in Fig. A5. The 
results of the analysis of the top richness quantiles 
are shown in Fig. 7, overlaid with protected areas 
and the old greenbelts in the core area of the Ruhr 
Metropolis. Notably, hotspots based on 5% TSR 
(Q95) encompass six percent (250 km²) of the Ruhr 
Metropolis, whereas Q90 covers 10.5% (441 km²), 
and Q85 includes 17% (696 km²). In total, 116 km² 

Fig. 6: Median variable importance scores per species across all algorithms
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of identified species richness areas are not covered 
by protected areas, including 28 km² of Q95. An ex-
ample of unprotected area with potentially high spe-
cies richness is shown in the map strip of Figure 7. 
The area is one of the remnants of the greenbelts in 
the south of the city of Bochum, consisting of a di-
verse composition of different land uses and habitat 
structures, including water bodies, agricultural fields 
and forest relicts. Although a high number of raster 
cells with high species richness are located outside 
of the core area of the Ruhr Metropolis, it is evi-
dent that even densely urbanized sectors of the Ruhr 
Metropolis have the potential to support a major-
ity of the species that were examined, even though 
these areas are currently not under legal protection. 
Outside of the core area high species richness is es-
pecially common along the river axes of the Rhine, 
Ruhr and Lippe Rivers, with their diverse and ex-
tensive landscapes, comprising extensively used agri-
cultural fields and grassland but also renatured wet-
land and forested areas. Within the central core area, 
species richness manifests in small patches dispersed 
throughout the entire metropolis region. In particu-
lar, the eastern section benefits from the old regional 

greenbelts that act as valuable habitat corridors for a 
substantial proportion of avian biodiversity. 

4 Discussion

The combination of CS datasets and RS data in 
SDMs has not been widely used to analyse dense ur-
ban surroundings in terms of habitat suitability for 
bird species. This study demonstrated that citizen 
science-powered SDMs combined with datasets de-
rived from remote sensing offer a sophisticated and 
accurate method for predicting avian species diversity 
within urban landscapes. Our findings confirm that 
SDMs have considerable predictive capabilities for 
biodiversity assessment at a fine scale in urban envi-
ronments, despite relying solely on CS data without 
structured survey datasets.

Previous studies have shown that the combination 
of RS and SDMs is favourable for use in urban settings 
to differentiate the heterogeneity of urban landscapes 
and compensate for the lack of researchers’ access to 
certain areas, such as private gardens and inner court-
yards (rocchini et al. 2010, rocchini et al. 2016).

Fig. 7: Species richness analysis of  the Ruhr Metropolis Hotspot analysis by species richness quantiles (QSR) of  the 0.95 
(Q95), 0.90 (Q90), and 0.85 (Q85) quantiles. Grey shadings depict hotspots inside legally protected areas, red shadings hotspots outside. 
Water bodies of  the Ruhr Metropolis are depicted in blue. Green space network composed of  old greenbelts (green) and biotope net-
work areas (beige) of  special interest to conservation (protected areas). The biotope network consists of  nature and landscape protec-
tion areas, as well as other legally protected biotopes important for biodiversity and preservation of  connectivity. The core area depicts 
the densely populated area of  the Ruhr Metropolis (data modified from Zepp 2018 and OpenGeodata.NRW). The map strip shows one 
part of  the remnants of  the greenbelts with high species richness evaluation.
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Although spatial thinning, spatial cross-vali-
dation and model evaluations were cautiously per-
formed to minimize unwanted dependencies and 
inaccuracies, the reliance on CS datasets introduces 
potential biases derived from uneven spatial cover-
age and varying reporting intensities (feldMan et 
al. 2021). These biases may affect the overall repre-
sentativeness of the avian species distribution in the 
study area. In general, when investigating single-
species models, interspecies dependencies can not 
be detected, which may have biased species habitat 
suitabilities in this study (araúJo & Guisan 2006).

Nevertheless, overall satisfying test metrics of 
ROC, TSS and Boyce index for all species and mod-
els confirm good predictive power and rather few 
potential biases. Intentionally, we chose random 
sampling of pseudo-absences, variogram thinning 
and block cross validation to minimise spatial de-
pendencies and to rather over- than underpredict 
rare species and their fundamental niches in the 
study area (valavi et al. 2019, whitford et al. 
2024, Márcia BarBosa et al. 2013). The bias score 
hints that the models are far from over-predic-
tion and rather tend to underpredict. As the bias 
scores tend to be near 1 for all species, biases of 
under- or overprediction are neglectable, though.  
We were able to show that the combination of both 
CS and RS is sophisticated in urban settings (such 
as the Ruhr Metropolis) on a fine spatial scale. 
Our approach yielded high accuracy and predic-
tive power for all 26 planning-relevant species that 
were investigated. Although accuracy and perfor-
mance varied among species and algorithms, over-
all predictions of species distribution patterns were 
deemed reliable for further analysis (Guisan et al. 
2017). Species with distinct land use preferences 
and consistent nesting site requirements, such as 
woodpeckers or skylarks, were predicted with high 
precision, whereas species with a broader range of 
habitat preferences and larger range sizes as well 
as higher general abundance, such as birds of prey, 
were predicted less accurately (Fig. A3a, A3b). 
Birds of prey may use open spaces for hunting re-
gardless of the land use type, whereas woodpeck-
ers or skylarks are more restricted to certain land 
use types for foraging and breeding. Although, we 
restricted the occurrence points to the commonly 
used breeding codes, we still found to have less pre-
dictive power for certain species. Thus, occurrence 
data for abundant and noticeable species may be 
less associated with distinct environmental param-
eters, which leads to a lack of well-defined statisti-
cal results. The results show that increasing habitat 

tolerance of species unfavourably affects the accu-
racy of SDM predictions, as stated in many previ-
ous studies (Mcpherson & JetZ 2007, Mitchell et 
al. 2001, seGurado & araúJo 2004, pearce et al. 
2001). To account for different abundances, a more 
refined and restricted use of the breeding codes 
would be advisable for common species. Currently, 
we uniformly used equal breeding codes for all 
species to prevent the underprediction of rare and 
less detectable species. To better align occurrence 
points with the corresponding environmental pre-
dictors it might be necessary to differentiate the 
used breeding code classes according to the abun-
dance of the investigated species. Nevertheless, the 
quality of predictions that had been demonstrated 
in this study can be considered as sufficient enough 
for assessing species richness (Mcpherson & JetZ 
2007).

In our preliminary analysis, simple machine 
learning algorithms, such as RF and XGBOOST, 
outperformed more complex algorithms, such as 
ANNs or regression-based algorithms (GLMs). 
Overall, in our study Random Forest outperformed 
all other metrics, which has been found also by oth-
er studies fitting SDMs based on unstructured pres-
ence-only sample data (lawson et al. 2014, valavi 
et al. 2022). These patterns have been widely known 
in the literature for SDMs built with unstructured 
CS datasets in areas with structural richness and 
diverse landscape characteristics, such as urban 
environments (hernandeZ et al. 2008, williaMs 
et al. 2009). Therefore, simpler machine learning 
algorithms such as RF are better at predicting habi-
tat suitability from incomplete and unstructured 
datasets due to their robustness to statistical out-
liers. Complete and structured data favour neural 
networks and classification algorithms.

The results of the species richness analysis pin-
pointed significant predicted occurrences along the 
Rhine River with its restored and preserved wet-
land, forest and agricultural habitats and less popu-
lated surroundings. In addition, high spatial con-
cordance was also observed with the open green 
space system covering biotope networks and con-
sisting of river and grassland systems located in the 
periphery of the core area of the Ruhr Metropolis 
(Fig. 7). Within the core area, patches and re-
gional hotspots with high species richness could 
be identified. In particular, repurposed industrial 
brownfields and derelict collieries now function as 
habitat structures for preserved species richness. 
During the economic transformation in the Ruhr 
region, these areas were preserved as brownfields 
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or became valuable green infrastructure, which 
can facilitate a high number of species by acting as 
refugee habitats and stepping stones in otherwise 
highly-sealed surroundings (anGold et al. 2006, 
harrison & davies 2002).

Some biodiversity hotspots that were demon-
strated by this study coincide with locations that 
were highlighted in a recent publication examining 
biodiversity across former mining sites within the 
Ruhr Metropolis (reGionalverBand ruhr 2022). 

Additionally, the structures and appearances of 
the five old regional greenbelts across the Ruhr re-
gion are mirrored in the species richness analysis. 
These green infrastructure-dominated landscapes 
work as a dense network of habitats spanning the 
cities of the Ruhr region (Zepp 2018), thus support-
ing biodiversity and ecosystem preservation. These 
belts consist of richly structured green infrastruc-
ture composed of extensive grassland, forest relics 
and water bodies interconnecting the large river 
axes in the North and South.

This study highlights the efficacy of SDM driven 
methodologies for identifying conservation-worthy 
habitats within inner-city environments. As urban 
areas continue to rapidly evolve, SDMs could play 
an integral role in pinpointing critical regions for 
species protection strategies aligned with conserva-
tion objectives (le louarn et al. 2018, Brun et al. 
2020), thereby guiding initiatives aimed at sustain-
ing and enhancing populations and habitats vital 
for biodiversity preservation.

4.1 Implications for urban green space plan-
ning in the Ruhr Metropolis

The species richness analysis shows the impor-
tance of preserving these green infrastructures not 
only in the larger connected networks in the out-
skirts of cities but also within the densely populated 
areas of inner city core areas, where they serve as 
ecological crosslinks (keil et al. 2021). Despite the 
need for densification and urban sprawl, which in-
tensifies the pressure on the Ruhr Metropolis for 
urban development and the use of open spaces for 
construction in the Ruhr Metropolis and elsewhere 
(lin et al. 2015, haaland & van den Bosch 2015), 
action concepts for prioritizing nature conservation 
and preservation were recently established with 
the framework of a Regional Strategy for Urban 
Biodiversity (keil & herinG 2022, keil et al. 
2021). Within this framework, mission statements 
aimed at preserving and restoring urban nature 

within and beyond existing biotope networks, ur-
ban green spaces and even private greenery were de-
veloped. The framework suggests supportive meas-
urements and monitoring concepts to identify early 
biodiversity changes on small or large scales. For 
large-scale assessments meta-barcoding, CS and RS 
techniques are key tools for assessing and monitor-
ing biodiversity within the Ruhr Metropolis (keil 
& herinG 2022). 

From the perspective of the Regional Strategy 
for Biodiversity, our analysis helps to delineate and 
identify areas for prioritizing nature conservation. 
The presence of high species richness outside of 
protected areas suggests that conservation efforts 
should extend beyond legally designated zones. 
Urban and semi-urban green and current protected 
areas should be extended to safeguard the inner 
core green spaces. Hence, the green space network, 
including both old greenbelts and biotope network 
areas, plays a critical role in maintaining biodiver-
sity and should be a focus for future conservation 
strategies. The indicator status of birds for other 
taxa even exceeds the considerations for conser-
vational management beyond the examined avian 
biodiversity.

When considering the SLOSS (Single Large or 
Several Small ) debate (fletcher et al. 2018, fahriG 
2020, tJørve 2010, fahriG et al. 2022) concerning 
whether rather large single green spaces or several 
small patches better support biodiversity richness, 
the study initially emphasized the enhancement of 
biodiversity through large connected ecological 
corridors. In the urban core area, the implementa-
tion of extensively linked corridors may enrich bio-
diversity, as observed within the remnants of the 
crossing greenbelts. However, small patches within 
the core also sustain a diversity of avian species due 
to conservation efforts at historical industrial sites 
and other substantial green areas, such as cemeteries 
(kowarik et al. 2016, villaseñor & escoBar 2019) 
or urban and landscape parks (nielsen et al. 2014, 
yanG et al. 2020). These structurally diverse sites 
are essential for biodiversity conservation. Thus, a 
balanced approach combining the maintenance of 
smaller rich patches with expansive high-quality 
green corridors throughout the Ruhr Metropolis 
could ensure a resilient network of green spaces. 
With this synergy, larger green spaces may func-
tion as source habitats supporting smaller patches 
and their urban surroundings during events such as 
local population loss due to human-induced distur-
bances or climate chance-related hazards (snep et 
al. 2006, savard et al. 2000).
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5 Conclusions

In summary, our study successfully integrated 
Citizen Science (CS) data and remote sensing (RS) data 
into species distribution models (SDMs) to predict avi-
an species presence in the urban landscape of the Ruhr 
Metropolis, Germany. The SDMs exhibited robust 
predictive performance, with consistently high ROC 
and TSS values across 26 selected species that were 
relevant to urban planning. Accuracy metrics, includ-
ing sensitivity, specificity, and bias scores, confirmed 
the models’ reliability in accurately classifying species 
occurrences. The Boyce index evidenced a high trans-
ferability beyond training space and time. We found 
precipitation, temperature, and the proportion of wa-
ter, wetland and grassland to be the strongest drivers 
of bird distribution within the urban environment. 
The species richness analysis revealed distinct dis-
tribution patterns, thus emphasizing the pivotal role 
of green infrastructure across and between the green 
spaces along the river axis. High species richness along 
the Rhine River and within the urban core area high-
lighted the importance of preserving diverse habitats 
with respect to urban densification. The preservation 
of small patches with high biodiversity linked by large 
high-quality green space corridors may be favour-
able for biodiversity conservation in the urban area 
of the Ruhr Metropolis. These findings have practi-
cal implications for urban planning and conservation 
strategies, such as the recently implemented Regional 
Strategy for Biodiversity within the Ruhr Metropolis, 
thus guiding policy-makers to secure biodiver-
sity hotspots and prioritizing conservation efforts. 
The integration of CS and RS datasets has proven to 
be a sophisticated approach, thus providing fine-scale 
predictions and enabling broad-scale identification of 
biodiversity patterns. In essence, our approach offers 
a valuable outcome for comprehending and conserv-
ing biodiversity in the dynamic urban environment of 
the Ruhr Metropolis and beyond.
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Appendix

Scientific Name

Land use classification

Tree cover Shrubland Grassland Cropland Built-up Sparse
vegetation

Water
bodies

Herbaceous
wetland

Accipiter gentilis ++ + - - -- -- -- --

Accipiter nisus + ++ - - + - -- --

Acrocephalus
scirpaceus -- - + - - -- + ++

Alauda arvensis -- - ++ ++ - + -- +

Anthus pratensis -- ++ ++ + - + -- +

Anthus trivialis ++ + + - -- - -- -

Ardea cinerea + - + + - - ++ ++

Buteo buteo ++ ++ + + - -- -- --

Carduelis cannabina - ++ ++ + - -- -- +

Charadrius dubius -- + + -- + ++ - ++

Corvus frugilegus ++ ++ + + + - -- -

Cuculus canorus -- - ++ - - -- -- ++

Delichon urbicum -- - + ++ ++ -- -- --
Dendrocopos medius ++ + -- -- - -- -- --
Dryobates minor ++ + -- -- - -- -- --

Falco subbuteo + ++ + - -- - -- -

Falco tinnunculus - + ++ ++ ++ - -- -

Hirundo rustica -- - + ++ + - -- --

Lullula arborea - + ++ - -- ++ - +

Luscinia
megarhynchos + ++ + -- - -- - +

Milvus milvus ++ + + + -- - -- --

Passer montanus + ++ - + - -- -- -

Phoenicurus
phoenicurus + ++ - -- + - -- -

Streptopelia turtur + ++ + -- - -- -- -

Sturnus vulgaris ++ + + + + -- -- --

Vanellus vanellus -- -- + ++ -- + -- -

Tab. A1: Habitat preferences of  the investigated avian species. Land use classification based on the ESA WorldCover (ZanaGa 
et al. 2022). The habitat preferences of  the species were derived from kiel 2016, Bauer et al. 2005.  ++: highly suitable, +: suitable,  
-: less suitable, --: unsuitable.
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Fig. A1: Pearson correlation coefficient matrix comparing paired environmental covariates (n=7,540). Negative correlations 
are shaded blue; positive correlations are shaded red. The strength of  the correlation is indicated by colour saturation. Stars indicate 
significance levels; ***: P<0.05, **: P<0.01, ***: P<0.001.
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Fig. A2: Model performance of  eleven algorithms for four test species: a) Alauda arvensis, b) Delichon urbicum, c) Dendro-
copos medius, and d) Luscinia megarhynchos.
The bottom left indicates models that performed poorly based on both metrics, whereas points in the bottom right performed well for 
ROC but not TSS, points in the top left performed well for TSS but not ROC, and points in the top left performed well for both metrics. 
Each point includes error lines, thus indicating the possible range of  actual values. We evaluated both the points and lines for model se-
lection. We included four species covering several occurrence aspects, such as land use preferences, nesting behaviour and commonness.
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Fig. A3a: Results per species for applied algorithms evaluated by ROC
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Fig. A3b: Results per species for applied algorithms evaluated by TSS



223Evaluating urban biodiversity: Effectiveness of  citizen science driven species distribution models in urban ecosystems2024

GEDI

SEAL

TCDbio
14

bio16

bio6

p_crop

p_grass p_
sh

ru
b

p_
so

il

p_water

p_wetland

0.0
0.1

0.2
0.3

0.4

GEDI

SEAL

TCDbio
14

bio16

bio6

p_crop

p_grass p_
sh

ru
b

p_
so

il

p_water

p_wetland

0.0
0.1

0.2
0.3

0.4

GEDI

SEAL

TCDbio
14

bio16

bio6

p_crop

p_grass p_
sh

ru
b

p_
so

il

p_water

p_wetland

0.0
0.1

0.2
0.3

0.4

GEDI

SEAL

TCDbio
14

bio16

bio6

p_crop

p_grass p_
sh

ru
b

p_
so

il

p_water

p_wetland

0.0
0.1

0.2
0.3

0.4

RF XGBOOST

GAM GBM

Variable
Importance

0.05

0.10

0.15

0.20
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Fig. A5: Frequency distribution of  total species richness (TSR). Total species richness (TSR) per grid 
cell. The more blue the raster cell is, the greater the number of  predicted species within the raster cell. For the 
number of  grids per TSR, Q95 indicates the 95% quantile (5%-based hotspot). Q90 and Q85 indicate the 90% 
and 85% quantiles, respectively.


