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Summary: Here we present a Data Paper with microscopically measured data on ring widths of  the arctic-alpine dwarf  
shrub species Betula nana L. from Central Norway. We intend to continuously update the dataset in the future with further 
ring width measurements of  this widespread shrub species.
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1 Background, aims, and objectives

In the face of ongoing climate change, the still 
open question of when, how and why plants grow is a 
highly topical issue in alpine research. Therefore, the 
focus of current studies across biomes that aim to as-
sess seasonal radial growth of woody alpine plants is 
on using high-resolution dendrometer measurements 
to better understand plant growth and predict species 
response to future changes (DobbErt et al. 2021a, 
2021b, 2022b, 2022c, albrECht et al. 2022, 2023a, 
2024a, 2024b). At the same time, there are numer-
ous studies addressing the same or related questions 
by applying classical dendroecological techniques 
based on wood anatomy of alpine shrubs (franCon 
et al. 2017, 2020a, 2020b, 2021, 2023, piCCinElli et 
al. 2023, pErEira et al. 2023). Moreover, studies fo-
cusing on alpine soil temperature and near-surface 
air temperature variability enhanced our knowledge 
on potential responses of alpine ecosystems to glob-
al climatic change (papE et al 2009, WunDraM et al. 
2010), as did studies on spatial patterns of alpine 
phytomass, primary productivity and associated ca-
loric resources (papE & löfflEr 2016, 2017). In this 
context, arctic and alpine ecosystems of the tundra 
biome are of particular interest, as they are strong-
ly affected by an intense warming trend (poSt et al. 
2019, AMAP 2021, IPCC 2021). This intense warming 
promotes shrub growth and favours the invasion of 
shrubs at the uppermost limit of distribution, leading 
to broad-scale increases in biomass and dwarf shrub 
cover (ElMEnDorf et al. 2012, bjorkMan et al. 2018), 
potentially affecting the uptake and storage of atmo-

spheric CO2 as well as landscape greening and associ-
ated feedback cycles (bjorkMan et al. 2018, gaMM et 
al. 2018, Zhang et al. 2018, poSt et al. 2019, MyErS-
SMith et al. 2020, DobbErt et al. 2022a). Since 2006, 
several dendroecological studies have been conducted 
in the Norwegian alpine focusing on shrub growth to 
gain a better insight into possible future vegetation 
shifts and site-specific adaptations (bär et al. 2006, 
2007, 2008, WEijErS et al. 2018, DobbErt et al. 2021a, 
2021b, 2022b, 2022c). In this context, the potential of 
Betula nana (Linné) for dendroecological studies has 
been tested (MEinarDuS et al. 2011). Here, we present 
annual ring widths data of the deciduous, arctic-al-
pine dwarf shrub B. nana, which has a near circum-
polar distribution (hultén 1968, see büntgEn et al. 
2015 for distribution maps) and exerts considerable 
effects on tundra communities (brEt-hartE et al. 
2001, WahrEn et al. 2005). Thus, it may play a key 
role for the greening and browning trends observed 
in the region (CraWforD 2008, MyErS-SMith et al. 
2015, hollESEn et al. 2015), and has therefore been 
excessively studied in recent years (brEt-hartE et al. 
2001, hollESEn et al. 2015, Cahoon et al 2016, li et 
al. 2016, DaniElS et al. 2018, buChWal et al. 2022, 
MagnúSSon et al. 2023, poWEr et al. 2024).

In Central Norway, B. nana dominates large parts 
of the alpine ecosystems (gjærEvoll 1956) and oc-
curs across a broad range of micro-habitats (löfflEr 
et al. 2020), probably because it is able to tolerate 
comparatively low winter temperatures, varying snow 
cover thickness, and harsh winds to a certain extent 
(anDrEWS et al. 1980, StuShnoff & junttila 1986, 
DE groot et al. 1997, ögrEn 2001, bär et al. 2007). 
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However, it has been shown to prefer rather moderate 
site conditions (DiErSSEn 1996), and to react positive-
ly to climate warming (WahrEn et al. 2005). löfflEr 
and papE (2020) found a wide realized thermal niche 
for this species with optimum summer shoot zone 
temperatures of >16.4°C, and summer root zone 
temperatures >6.2°C, respectively. This emphasized 
the crucial role of thermal conditions in autumn and 
winter, suggesting that B. nana is snow-covered and/or 
physiologically inactive during this phase of the year.

2 Study areas

The presented dataset is based on specimens 
taken from two study regions located in two con-
trasting alpine regions of central Norway. To the 
east, the Vågå/Innlandet region (61°53′N; 9°15′E) 
is located within the continental climatic part of 
Norway, characterized by comparatively high aridity 
(löfflEr 2003). To the west, the second study region, 
the Geiranger/Møre og Romsdal region (62°03′N; 
7°15′E), is located within the slightly to markedly 
oceanic climatic section of the inner fjords. It is char-
acterized by humid conditions (löfflEr 2003).

3 Methods and techniques

As part of our long-term alpine ecosystem re-
search program in central Norway (LTAER-NO; 
löfflEr et al. 2021), we collected 143 B. nana spec-
imens for our ring width measurements at the base 
segment of the specimens (Fig. 1), which is thought 
to integrate the growth of the whole plant (cf. roparS 
et al. 2017). Corresponding to the heterogeneous al-
pine topography in the study area, we collected the 
specimens from four different micro-topographic po-
sitions (ridge, south-facing slope, north-facing slope, 
depression; löfflEr et al. 2021) between 700 m a.s.l. 
and 1150 m a.s.l. in the West and between 1029 m a.s.l. 
and 1510 m a.s.l. in the East. We collected the first 
specimens (five to six at each site) in 2017 and plan to 
add more in the future.

To obtain permanent histological preparations, we 
cut thin sections of 15 to 20 µm from all our samples. 
According to standardized protocols (SChWEingrubEr 
& poSChloD 2005, gärtnEr & SChWEingrubEr 2013), 
we stained the sections with Safranin and Astra Blue 
and embedded them in Euparal. We captured images 
of each section with an optical microscope (Keyence 
VHX-5000), using 100 x magnification.

Habitus of B. nana

Autumn aspect of B. nanaSummer aspect of B. nana B. nana specimen with base segment marked in red

100 mm

Fig. 1: Photos of  B. nana, showing the habitus of  the species, its seasonal aspects, and the structure of  its below- and above-
ground biomass with the base segment used for our ring width measurements. B. nana is a deciduous, prostrate shrub up to 
1 m in height with stiff, dull dark brown twigs and orbicular or obovate-orbicular dark green leaves that turn yellow and red 
during autumn shortly before leave shedding (de Groot et al. 1997). The root system of  the species penetrates to a depth of  
40 to 45 cm, but the majority of  the root system is only 10 to 20 cm deep (ejankowski 2008).
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Comparable with previous ring width measure-
ments on alpine shrubs in the Mediterranean biome 
(albrECht et al. 2023b) and in the Tundra biome 
(kühnapfEl et al. 2023), we measured the annu-
al ring widths along four radii up to the pith, evenly 
distributed across each entire section (Fig. 2). In this 
way, we obtained 572 individual annual ring width 
curves along the four radii, which we aligned in a first 
cross-dating step by inserting missing and wedging 
rings when we identified appropriate anatomical ev-
idence, before averaging them to obtain annual time 
series of each section. For detected missing rings and 
wedging rings, we added 7.561 µm to the time series, 
which was the smallest measured value of the entire 
dataset (buChWal et al. 2013). As such, we obtained 
a total of 143 time series of annual growth incre-
ments for B. nana, which we visually cross-dated to 
determine the specimenś  age and growth patterns by 
a) comparing the five to six time series of each site 
with each other, and by b) comparing the obtained 
site chronologies with those of the same topograph-
ic positions. During this process, we again checked 
for missing and wedging rings, which we inserted if 
evidence emerged from comparing the time series of 
each site and topographic position. In this way, we ob-
tained chronologies representing the specieś  growth 
patterns across a large variety of different sites along 
multiple geographical gradients.

The xylem of B. nana is typically diffuse and less 
common semi-ring porous, and annual rings are clear-

ly visible as delimited by 1–2 layers of parenchyma 
cells (bhat & kärkkäinEn 1982; Fig. 3), unless the 
rings are wedged. The vessels occur solitary or in clus-
ters of 2-3 or 4 vessels with thick walls and rays are 
uniseriate and/or multiseriate, consisting of 1, 2 or 3 
cells (bhat & kärkkäinEn 1982). The specieś  pith is 
often asymmetrical and usually located in the centre 
of the cross section.

4 Data structure

Our dataset is organised according to the follow-
ing attributes.

id
Unique identifier in the form: country code (NO for 
Norway), study region (E = Eastern study area, Vågå/
Innlandet region, W = Western study area, Geiranger/
Møre og Romsdal region), elevation [m a.s.l.], position 
(A = ridge, B = depression, C = south-facing slope, 
D = north-facing slope), species (“Bnan”), number 
representing the sampled stem (00 – 05), intra-plant 
segment (e.g., nB01 for the first segment at the base of 
the stem), and measured radius (01 – 04).

region
Study region in which the specimens were sam-
pled (Vågå/Innlandet region or Geiranger/Møre og 
Romsdal region).

elevation
Elevation in meters above sea level [m a.s.l.].

species
Monitored shrub species: Betula nana (Linné).

position
For description of topographic positions see löfflEr 
et al. (2021).

segment
Intra-plant segment (base).

radius
Measured radius (01 – 04).

year
Year of ring formation (after visual cross dating).

ringWidth
Ring width [µm], measured along four radii and sub-
sequently averaged.

100 µm

r04

r01

r03

r02

pith

Fig. 2: Cross section of  a base segment of  B. nana collected 
in the East at 1319 m a.s.l. with measurements of  four radii 
(r01 – r04) and marked pith, the measurement of  which was 
excluded from the dataset before analysis.
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5 Dataset

Here, we publish a current dataset as part of an 
ongoing long-term project, and our dataset will be 
updated, and is as a dataset supplement available 
online via: https://doi.org/10.3112/erdkunde.2024.
ds.01
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