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Summary: In recent years, numerous multitemporal global land use and land cover products have been published acting as 
valuable source for training spatially explicit geosimulation models forecasting urban growth. However, there is a notable 
gap in research that specifically addresses the sensitivity of  models traing with those data sets when it comes to regional 
modeling purposes. Accordingly, the objectives of  this study were to calibrate, validate, and employ global urban input 
datasets for the regional simulation of  urban growth by the year 2030. The SLEUTH urban growth model, focused on the 
metropolitan area of  the Ruhr, Germany, was calibrated using the Global Human Settlement Layer, World Settlement Foot-
print Evolution, historical OpenStreetMap data, and a Digital Land Cover Model for Germany. The goal was to compare 
the results in terms of  accuracy, certainty, quantity, and allocation, particularly in urban areas susceptible to floods and heat. 
While all models achieved high accuracy levels concerning quantity and allocation, the extent of  new settlements varied 
from 40.77 km2 to 477.91 km2. The models based on World Settlement Footprint and OpenStreetMap exhibited higher 
certainty and lower stochasticity. As the simulated urban growth increased, there was a corresponding rise in the likelihood 
of  allocating new settlements in areas affected by natural hazards. While all models presented a similar relative portion of  
new settlement areas impacted by floods, variations emerged in terms of  areas affected by unfavorable thermal conditions. 
This study underscored the potential use of  historical OpenStreetMap data in training cellular automation for geosimulating 
future settlement growth. Furthermore, it highlighted the applicability of  global Earth observation-based urban datasets 
for regional geosimulation and explored the impacts of  diverse input data on the accuracy, certainty, quantity, and allocation 
performances in simulating future conditions.

Keywords: Urban development, SLEUTH, OpenStreetMap, Ruhr Metropolitan Area, Global Human Settlement Layer, 
World Settlement Footprint

1 Introduction

By 2050, two-thirds of the population is expect-
ed to live in cities. With this continuously increasing 
urban population and its footprint, sustainable urban 
development requires the assessment, mapping, and 
modelling of urban environments with high spa-
tial detail. This is particularly true since the impacts 
of progressing anthropogenically induced climate 
change also affect an increasing number of cities and 
agglomerations in temperate climate zones (ADAMO et 
al. 2012, ELSE 2021, OLESON et al. 2015, RIENOW et 
al. 2022). Machine learning-based urban models are 
recognized as one of the main tools for urban moni-
toring in terms of description, explanation, planning, 
and future prospects of urban growth on disaster risk 
management (CHIEN et al. 2020, HASSAN & ELHASSAN
2020, KRELAUS et al. 2021, WANG & UPRETI 2019). 
These models rely on accessible, accurate, and tem-
porally and spatially detailed input data on settlement 
patterns. Recently, satellite-based global urban data-

sets have emerged, providing researchers with hu-
man settlement footprints with associated historical 
development, such as the Global Human Settlement 
Layer (GHSL) (CORBANE et al. 2018a, 2019) and the 
World Settlement Footprint Evolution (WSF Evo) 
(MARCONCINI et al. 2021, 2020). Furthermore, the 
Ohsome Application Programming Interface (API) 
(RAIFER et al. 2019) enables scientists to access his-
toric OpenStreetMap (OSM) data, making it the most 
used volunteered geographic information (VGI) sys-
tem worldwide (JOKAR ARSANJANI et al. 2015). Several 
studies have used OSM information to derive land use 
and land cover (LULC) products. ESTIMA & PAINHO
(2015) investigated the potential of OSM data for 
LULC maps production, using the CORINE Land 
Cover inventory as a reference. SCHULTZ et al. (2017) 
filled the OSM data gaps using available open source 
remote sensing data. In addition, PATRIARCA et al. 
(2019) developed an automated conversion of OSM
data into LULC maps. The transition to raster data 
format and the implementation of procedural com-
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ponents using OSM data led to notable performance 
improvements, with no notable positional distortions 
that would impair the usability of the final outcome 
in subsequent case scenarios. The LandSense project 
hosts the WebService, providing LULC information 
derived from OpenStreetMap with global coverage 
(https://osmlanduse.org). ZHOU et al. (2015) applied 
cellular automaton (CA) with a global urban LULC
input dataset, derived from the commercial prod-
uct LandScanTM, to compare global urban LULC prod-
ucts and their applicability for regional geosimulation 
studies. The regional scale is often deemed optimal for 
spatially explicit modeling due to its ability to capture 
detailed local variations while maintaining a broader 
perspective. This scale offers a balance between gran-
ularity and comprehensiveness, making it suitable for 
various analyses such as land use planning, environ-
mental impact assessment, and hazard monitoring. On 
the other hand, global settlement products provide a 
comprehensive view of human settlements world-
wide, offering valuable insights into global trends and 
patterns. However, they may lack the fine-scale detail 
required for local decision-making and can be prone 
to inaccuracies, particularly in areas with limited data 
availability or complex terrain. Therefore, while global 
settlement products are valuable for broad-scale anal-
yses, they may not always suffice for detailed, localized 
studies (LIU et al. 2020b). PESARESI & POLITIS (2023) 
utilized spatial-temporal interpolation and extrapola-
tion for predicting global settlement patterns in 2025 
and 2030 based on the GHSL with a resolution of 
100 m. They applied a rank-optimal spatial allocation 
method to resolve a built-up prediction by combining 
static and dynamical components based on empiri-
cal associations between specific land form combi-
nations and human settlement development gleaned 
from remotely sensed data. With regard to WSF Evo, 
WANG et al. (2022b) conducted a regional case study 
for comparing the spatio-temporal matrix (STM) ap-
proach and SLEUTH Urban Growth Model (UGM) 
for the prediction of future settlement growth for the 
urban agglomerations of Surat (India), Ho-Chi-Minh 
City (Vietnam), and Abidjan (Ivory Coast). They con-
clude that STM-based models outperform SLEUTH-
UGM but are not able to predict spontaneous settle-
ment growth. Furthermore, they state that the WSF
Evo product restricts the modelling and evaluation of 
the model outputs with real measurements to certain 
constellations due to its availability from 1985-2015. 
Additionally, studies like the aforementioned do not 
focusing on the sensitivity of global LULC products 
on spatially explicit geosimulation models and how 
the input data might change the outcome especially 

when it comes to environmental impacts and hazard 
monitoring. This is also true for studies comparing 
the geosimulation potential of open global LULC
products and their applicability at the regional level.

Therefore, the objective of this study was to car-
ry out a regional study on future settlement develop-
ments in the context of environmental hazards like 
floods and heats stress. This was executed through 
the calibration, validation, implementation of WSF, 
GHSL, and OSM data for simulation of urban growth. 
Global Earth observation-based settlement datasets 
were utilized for regional planning purposes, which 
had vast temporal extensions (1975–2015 GHSL), 
the highest temporal resolution (annually from to 
1985–2015, WSF), and most up-to-date data (OSM). 
Additionally, historic OSM data were applied for the 
implementation of an urban CA as a common urban 
growth model. The CA used in this study was the 
SLEUTH Urban Growth Model (CLARKE et al. 1997a), 
which is one of the most recognized urban growth 
models in the world with low requirements regard-
ing the cellular urban input data (CLARKE & JOHNSON
2020, JANTZ et al. 2010, LIU et al. 2020b, RIENOW et 
al. 2014, 2015, RIENOW & STENGER 2014, SAXENA et 
al. 2021, WANG et al. 2022a, Zhou et al. 2019). The 
study area is the metropolitan area of Ruhr in Western 
Germany and was chosen for its challenging polycen-
tric structure for bottom-up machine learning mod-
els (RIENOW et al. 2014, RIENOW & STENGER 2014, 
WANG et al. 2022a). The three global datasets were 
compared with a national-administrative dataset, as-
suming a higher accuracy of settlement information 
than the global datasets. The Digital Land Cover 
Model (DLM) for Germany (German “Digitales 
Landbedeckungsmodell für Deutschland”, LBM-DE, 
until 2012 DLM-DE) was based on selected areal ob-
ject types of the authoritative ATKIS® Basis-DLM
including areas of settlement, traffic, vegetation, and 
water bodies, which were adapted as a modified form 
to tailor for the specific requirements of CORINE
Land Cover nomenclature. The minimum mapping 
area of the dataset was 1 ha (HOVENBITZER et al. 2014). 
The spatial simulation results for 2030 were combined 
with two hazard maps: frequent flood risk and areas 
with a potential for heat stress as proxy for heat stress 
(SIEDENTOP et al. 2014). Hence, the subsequent re-
search questions guided this study:
• How accurate and certain can the SLEUTH

“Urban Growth Model reduced” (UGMr) data 
geographically simulate regional urban growth 
in a polycentric region based on global settle-
ment datasets, in comparison to that based on a 
regional LULC product?

https://osmlanduse.org
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• How do the CA results differ in quantity and 
allocation in urban environments affected by 
floods and heats when calibrated with different 
OSM mapping periods?

• How do the CA results, based on WSF and 
GHSL, differ in quantity and allocation in urban 
environments affected by floods and heats?

This study is structured as follows: Section 2 
introduces the study area; Section 3 describes the 
data and methods, which includes the CA SLEUTH
Urban Growth Model, the utilized global settle-
ment products and their harmonization, as well as 
further input data and geodata on environmental 
hazards. Section 4 presents the results of historic 
urban development and the calibration, validation, 
and settlement simulation of 2030. Section 5 dis-
cusses the limitations of the applied methods, and 
Section 6 states the conclusions of the study.

2 Study area

The study area lies in North Rhine-Westphalia 
(NRW) in western Germany (Fig. 1). It extends 
from the Lower Rhine Basin in the west to the 
Westphalian Plane in the north and the Rhenish 
Massif in the south. With its polycentric and ad-
ministratively fragmented structure, but homog-
enous and extensive urban area, Ruhr is a unique 
urban entity. Eleven cities and four districts form 
the largest agglomeration (1,152 people per km2) in 
Germany, and at 4,435 km2, it is the fifth largest ur-
ban region in Europe. The largest cities of Ruhr are, 
in descending order, Dortmund, Essen, Duisburg, 
and Bochum, with populations varying between 
364,000 (Bochum) and 592,000 (Dortmund).

The rapid economic, demographic, and mor-
phogenetic growth of Ruhr at the turn of the 20th

century was owing to construction during the age 
of industrial mining, spread of ironworks, railway 
expansion, and the foundation of Zollverein in 
the mid-nineteenth century. This era of prosper-
ity continued until after World War II. The cultural 
identity of the people of Ruhr is closely intertwined 
with industrial heritage. This is reflected in the way 
the elements of the natural landscape have been uti-
lized; the tectonic faults provided carbon and ore 
that were refined in the steel works, and the rural 
hinterland provided agricultural products. There 
are three rivers which cross the Ruhr region, from 
the mountainous east to the western Rhine valley, 
which also provide different social functions. The 

Ruhr River acted as a potable water resource, the 
Lippe River was utilized as a cooling water pool, 
and wastewater was diverted into the infamous 
Emscher River. The Rhine River has always served 
as an international trade route, and the Duisburg 
harbor has become the world’s largest inland port. 
Today, numerous renaturation sanctions, university 
buildings, and urban entertainment centers turn the 
image of the Ruhr as a sealed moloch with nights 
aflamed by smelting furnaces and freshly washed 
clothes colored black by smut into a cliché. Only 
the fine-meshed net of autobahns, museum con-
structions, and multicultural population provide 
evidence of the region’s industrial past (HOSPERS & 
WETTERAU 2018).

3 Data and methods

3.1 SLEUTH urban growth model reduced

The cellular automaton SLEUTH was devel-
oped for modeling changes in land-use (CLARKE
et al. 1997a, CLARKE 2008). It was originally con-
ceived for more than one land-use class. Most 
studies in the scientific literature identify SLEUTH
with one of its two sub-models. The first is the 
Clarke Urban Growth Model (UGM) (CLARKE et 
al. 1997b), which focuses exclusively on simulating 
urban growth. The second SLEUTH component is 
the Deltatron Land Cover Model, which was not 
used in this study.

For many applications, the amount of data re-
quired to calibrate the UGM is difficult to acquire. 
It was therefore reprogrammed by GOETZKE (2012) 
and implemented in the eXtendable Unified Land 
Use Modeling Platform (XULU©), a JAVA-based 
modeling environment developed at the University 
of Bonn (GOETZKE 2012, JUDEX 2008, SCHMITZ et 
al. 2007). 

The standard calibration evaluation method of 
the UGM has been replaced by multiple resolution 
validation (MRV) (PONTIUS et al. 2004, PONTIUS & 
MALIZIA 2004, RIENOW & GOETZKE 2015), which 
compares a simulated map with an observed map at 
different spatial resolutions. High resolutions had a 
higher weighting than low resolutions. Generally, 
MRV is to attenuate the impact of localization er-
rors by extending the conventional cell-by-cell 
comparison. In addition, it considers the similari-
ty of the entire neighborhood of a cell. Thus, the 
fuzziness of simulated maps has been taken into 
account (COSTANZA & MAXWELL 1991, VISSER 2004) 
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by enabling the accurate simulation of spatial pat-
terns by correctly classifying in a defined neighbor-
hood. Additionally, urban land use calibration with 
MRV requires only two maps, for the start and end 
years of calibration. The modified version of the 
UGM is referred to as the “Urban Growth Model 
reduced” (UGMr).

The base data of the UGMr includes the set-
tlement pattern of urban land use, classified as ei-
ther urban or non-urban. The slope and a map of 
transportation infrastructure are mandatory for the 
model algorithm. An exclusion layer is used to in-
corporate political constraints, such as natural re-
serves or areas that are excluded for urban growth, 
such as water bodies (0 = growth possible, 1 = 
growth not possible); this layer is an optional com-
ponent for the model.

One growth cycle of the UGMr represents one 
year of urban growth. Five growth coefficients (dis-
persion, breed, spread, slope, and road gravity) de-

fine the four growth rules of the UGMr subsequent-
ly performed for each growth cycle. (Fig. 2): (i) The 
first rule is spontaneous growth, representing the 
random emergence of new urban areas. This is de-
termined using the dispersion coefficient. (ii) Breed 
growth refers to newly urbanized cells that can act as 
core areas for urbanization in direct neighborhoods. 
(iii) Edge growth represents radial urban sprawl and 
the infill of existing urban areas. This is regulated 
by the spread coefficient. The UGMr simulates ex-
tensive edge growth in a Moore neighborhood of at 
least three urbanized cells. (iv) The fourth growth 
rule is road-influenced growth. Starting from a cell 
urbanized during the current growth cycle, the next 
road in a certain neighborhood is selected, and a 
temporary cell is relocated along the road to its final 
position, which is influenced by the dispersion coef-
ficient. Each probable new urban cell selected by a 
growth rule was tested against the local slope and 
exclusion information before it was urbanized. 
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Fig. 1: Study Area: The Ruhr Metropolitan Area
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An urban CA is a typical bottom-up approach 
that attempts to capture the self-organizing na-
ture of complex urban systems (BATTY 2008, 
BENENSON & TORRENS 2004). No ex-ante knowl-
edge of the parameters are required and they were 
detected by inductive reasoning during model cal-
ibration. Hence, the calibration process is based 
on the brute-force method. Each combination 
of the particular growth coefficients between 
0 and 100 was tested. An assessment of all pos-
sible parameter combinations can be very time-
consuming; therefore, the calibration procedure 
was performed in several steps, starting with a 
coarse evaluation, and then refining the results 
at several intervals (GOETZKE 2012, RAFIEE et al. 
2009, WU 1998). Subsequently, the combination 
that achieved the best MRV results was chosen. 
For the simulation run, 100 Monte Carlo (MC) it-
erations were used to depress the model’s stochas-
tic nature. The result of the MC iterations was a 
raster showing, for each cell, how often the model 
selected it for urbanization (BADMOS et al. 2019, 
RIENOW & GOETZKE 2015).

In this study, the SLEUTH UGMr was calibrat-
ed and validated using different datasets on settle-
ment patterns to compare the results in terms of 
accuracy, quantity, and allocation behavior. 

3.2 SLEUTH input data

3.2.1 Settlement datasets

Open Street Map
OSM data is one of the most widely used 

VGI systems worldwide ( JOKAR ARSANJANI et al. 
2015). Geodata are stored in a topological data 
structure based on four data primitives. These are 
nodes (points with geographic positions); ways 
(ordered lists of nodes representing polylines and 
polygons); relations (ordered lists of nodes and 
ways representing relationships among nodes and 
ways), and tags. The tags were stored as key-val-
ue pairs with a recommended ontology (https://
wiki.openstreetmap.org/wiki/Map_features). To 
access historic OSM data, the Heidelberg Institute 
for Geoinformation Technology developed the 
Ohsome API as an OSM History Analyzer (RAIFER
et al. 2019). The primary focus of the Ohsome 
API is intrinsic quality assessment. An additional 
benefit is the possibility of analyzing the devel-
opment of residential areas and certain ameni-
ties. Figure 3 presents the historic OSM mapping 
activities on nodes, ways, and relations in Ruhr 
from 2008 to 2021, for the key land use.

A Python script was developed for Jupyter 
Notebook accessing the Ohsome API and includ-
ed relevant OSM tags to map the development of 
settlement land use types. Table 1 presents the 
features utilized for the key “land use” in map-
ping settlement uses (FONTE et al. 2019, PATRIARCA
et al. 2019, SCHULTZ et al. 2017). Reliability and 
consistency were considered using the OSM data, 
commencing in 2012.

World Settlement Footprint evolution
The WSF evolution is a 30 m resolution data-

set outlining the global settlement extent on a 
yearly basis from 1985 to 2015. The processing 
method is described in MARCONCINI et al. (2021). 

Fig. 2: Modeling steps in the SLEUTH model (RIENOW & 
GOETZKE 2015)
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Fig. 3: Effect of  mapping period: Ohsome feature counts for 
the key land use in the Ruhr region
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Based on the assumption that settlement growth 
has occurred over time, all pixels catergorized as 
non-settlements in the WSF representing the year 
2015 (WSF2015) (MARCONCINI et al. 2020) were 
excluded from the analysis. For each past target 
year, all available Landsat-5/7 scenes were gath-
ered and key temporal statistics for the different 
spectral indices were extracted. Working back-
wards from 2015, the settlement and non-settle-
ment training samples for the given target year 
were iteratively calculated. Finally, a boolean 
Random Forest classification was performed. The 
WSF evolution datasets are organized into 5,138 
GeoTIFF files, each of which refers to a portion 
of a 2 × 2 degree size, which equates to approxi-
mately 222 × 222 km on the ground. An accura-
cy assessment can be found in MARCONCINI et al. 
(2021). 

Global Human Settlement Layer built-up area grid
The GHSL built-up area grid (GHS_BUILT_

LDSMT_GLOBE_R2018A) was based on Landsat 
and was developed for 1975, 1990, 2000, and 2014 
(CORBANE et al. 2019 & 2018b, EC JRC et al. 2019). 
The product was developed and disseminated by a 
team at the European Commission Joint Research 
Center ( JRC) and was based on 33,202 images 
(FLORCZYK et al. 2018). The main product is the 
multitemporal classification layer of built-up ar-
eas derived from the Global Land Survey (GLS) 
Landsat image collections (GLS1975, GLS1990, 
GLS2000, and ad-hoc Landsat 8 collection of 
2013/2014). It builds on the Symbolic Machine 
learning method designed for remote sensing big 
data analytics (PESARESI et al. 2016). CORBANE
et al. (2019) has provided a detailed explanation 
of the processing steps and usage of the GHSL
Sentinel-1 dataset (GHS_BUILT_S1NODSM_
GLOBE_R2018A) as a learning dataset, as well as 
the multitemporal accuracy assessment. Recently, 
the JRC released an update to the GHSL dataset 
(EC JRC 2023, PESARESI & POLITIS 2023). This is 
the GHS built-up surface grid and was derived 
from Sentinel-2 composite and Landsat data, and 
multitemporal data from 1975 modeled to 2030 
(GHS-BUILT-S R2023A). All years are at a resolu-
tion of 100 m, barring 2018, which is at 10 m. In 
addition, it continuously stores built-up surfaces 
continuously and non-boolean. It also focuses on 
residential areas for population disaggregation 
purposes. The product (GHS-BUILT-S R2023A) 
comprises of boolean change maps on built-up 
areas in general.

Digital Land Cover Model for Germany
The Digital Land Cover Model for Germany 

(German Digitales Landbedeckungsmodell für 
Deutschland, LBM-DE, until 2012 DLM-DE) 
contained areal land cover information based 
on the CORINE Land Cover European nomen-
clature (HOVENBITZER et al. 2014). The LBM-
DE dataset comprises selected areal object types 
of the ATKIS® Basis-DLM (German Digitales 
Landbedeckungsmodell, digital land cover model) 
land cover model for settlements, transport, vege-
tation, and water bodies. The classes were adapted 
in a modified form to meet the specific require-
ments of the CLC. The minimum mapping area 
of the dataset was 1 ha. The dataset has been up-
dated every three years to the respective reference 
year since the area-wide initial coverage in 2009, 
using multitemporal satellite image data (mainly 
RapidEye (post-2020), Sentinel-2, and orthopho-
tos). Since 2012, land cover and land use have 
been recorded separately, with subsequent auto-
matic transformation into the CLC nomenclature. 
While land cover was recorded using image data, 
the ATKIS® base DLM land use model of the re-
spective reference year was the land use source of 
information.

3.2.2 Harmonization of  the settlement data

Table 1 presents an overview of the land cover 
data and associated characteristics, which were 
utilized as inputs for the SLEUTH UGMr. Figure 4 
illustrates the processing scheme. First, the OSM
and LBM-De vector data were rasterized (30 m 
resolution). All datasets were then projected to 
ETRS89-extended / LAEA Europe and clipped 
to the extent of the metropolitan area of Ruhr. 
Every dataset was reclassified to generate boolean 
land cover input data, with urban areas and non-
urban areas. The respective settlement classes and 
years associated with the specific data sources are 
shown in Table 1. 

3.2.3 Slope, restriction areas, and transport

In addition to an urban dataset, SLEUTH
UGMr requires spatially explicit information on 
slopes, restriction areas, and transport informa-
tion. Slope information was derived using the 30 
m digital elevation model of the Shuttle Radar 
Topography Mission (FARR et al. 2007). A dataset 



77Forecasting urban futures: Evaluating global land use data sensitivity for regional growth simulation ...2024

on restricted areas was created by adding water 
body information from the LBM-DE dataset to 
the authoritative map on natural reserves from La
ndschaftsinformationssammlung (LINFOS) NRW
(2022). Transport information was derived using 
Geofabrik’s download server of OSM data and the 
key “highway” (GEOFABRIK 2022). The three 
datasets were processed to meet UGMr standards 
(RIENOW & GOETZKE 2015). Table 2 presents the 
information required for the initialization of the 
modeling process. The streets were weighted with 
different values, representing the variation in dif-
ferent speeds on a particular road types (GOETZKE
2012). 

3.3	Areas affected by floods and thermal condi-
tions

The analyses of the allocation of new urban 
areas within areas affected by f loods and heat 
stress were based on two administrative datasets 
of the State of North Rhine-Westphalia (NRW) 
in Germany. The NRW flood hazard maps pro-
vided information on which areas are subjected 
to f looding and the associated water depths and 
f low velocities. One product is the “HQfrequent” 
(Hochwasser, German for f loods, and Q is the 
discharge index) map representing relatively fre-
quent f loods that occur every 10 to 20 years, on 

Data set Settlement features and years Projection/ Resolution

OSM via Ohsome API
(Source: RAIFER et al. 2019)

residential, industrial, commercial, retail, 
harbor, port, railway, lock, marina, quarry, 
construction, landfill, brownfield, stadium, 
recreation ground, golf  course, sports 
center, common, allotments, playground, 
pitch, village green, cemetery, park, zoo, 
track, garden; 2012–2022.

WGS84, vector

WSF-EVO
(Source: MARCONCINI et al. 2021)

0 = non-settlement in the WSF2015
Multitemporal retrospective classification of  
Landsat-5/7; 2015, 2014, 2013, 2012, 2011, 
2010, 2009, 2008, 2007, 2006, 2005, 2004, 
2003, 2002, 2001, 2000, 1999, 1998, 1997, 
1996, 1995, 1994, 1993, 1992, 1991, 1990, 
1989, 1988, 1987, 1986, and 1985.

WGS84, 30 m

GHS_BUILT_LDSMT
_GLOBE_R2018A
_3857_30_V2_0
(Source: CORBANE et al. 2019 & 2018, EC 
JCR et al. 2019)

Multitemporal classification of  built-up 
presence.
0 = no data
1 = water surface
2 = land no built-up in any epoch
3 = built-up from 2000 to 2014 epochs
4 = built-up from 1990 to 2000 epochs
5 = built-up from 1975 to 1990 epochs
6 = built-up up to 1975 epoch

Mollweide, 30 m

LBM-DE
(Source: ©GeoBasis-DE / BKG 2022)

1.1.1. Continuous urban fabric 
1.1.2. Discontinuous urban fabric 
1.2.1. Industrial or commercial units
1.2.2. Road and rail networks and associated 
land 
1.2.3. Port areas 
1.2.4. Airports 
1.3.1. Mineral extraction sites 
1.3.2. Dump sites 
1.3.3. Construction sites 
1.4.1. Green urban areas 
1.4.2. Sport and leisure facilities.
2009, 2012, 2015, and 2018

ETRS89-extended / LAEA 
Europe, vector

Tab. 1: Settlement datasets and the utilized settlement classes
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average (for more information, refer to MUNLV
2022). The NRW state-wide climate analysis was 
carried out in 2018 to analyze the thermal and 
air-hygienic situation, as well as the effects of 
building and planning measures. Primarily, the 
spatial characteristics of air exchange and ther-
mally stressed areas were considered, and the rela-
tionship between compensation and affected areas 
was investigated. Recommendations for planning 
to improve or maintain the situation were derived 

from these results. The overall assessment aimed 
to provide an integrated evaluation of the facts 
presented in the day and night situations with re-
gard to planning-relevant concerns. It classified 
the thermal conditions as from “very favorable” 
to “extreme unfavorable” (LANUV 2018).

Fig. 4: Processing scheme and workflow of the study

Tab. 2: Spatial information needed to set up SLEUTH UGMr model

Name Description

Slope 0–97 percent

Natural reserve areas and waterbodies 
(exclusion of  urban development)

0: urbanization possible
1: urbanization not possible

Transport

0: bridleway, cycleway, footway, path, pedestrian, steps, track, track grade 1-5;
25: living street, service
50: residential, tertiary, tertiary link;
100: motorway, motorway link, primary, primary link, secondary, secondary, link, 
trunk, trunk link
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4 Results

4.1 Mapped urban areas and urban development 
in the Ruhr

Figure 5 depicts how heterogenous the data sets 
are when it comes to settlement mapping. The map 
depicts all areas labelled as “urban” in the different 
data sets. It shows those areas which are mapped as 
“urban” in all data sets, in some of the data sets, and 
if there are areas mapped as urban in just one of the 
data sets. Additionally, it comprises the quantitative 
settlement development of Ruhr between 1975 and 
2022, based on one national and three global data-
sets. For example, having a look in the Eastern part 
at the city of Dortmund (Fig. 5 bottom) for 2014/15, 
we see that the OSM data set misses the whole down-
town area. The urban coverage increases by 2022 but 
is still lacking (Fig. 5 c). Regarding the Ruhr this is 
the most extreme example of urban misses in the 
OSM data set. The other downtown districts are well 
covered. One can also observe the potential misses 
and false-positives of the other three data sets. The 
related land uses comprise cemeteries, horse race 
tracks, brown lands, and railroad areas. The set-
tlement growth depicted as 95 km2 (OSM data, for 
2021–2022), 164 km2 (WSF Evolution for 1985–
2015), 249 km2 (GHSL data, for 1975–2014), and 24 
km2 (LBM-DE, for 2015–2012). Different settlement 
extensions were observed, reaching 1,104 km2 in the 
WSF Evolution data to 1,574 km2 for the LBM-DE, 
whereas OSM and GHSL showed similar maximum 
values of 1,227 km2 and 1,234 km2, respectively, 
but in different years. Nevertheless, because the 
SLEUTH UGMr is trained with each dataset, a cer-
tain degree of consistency is guaranteed owing to 
the calibration and independent validation which are 
carried out for data from the same data source.

4.2 SLEUTH UGMr calibration

The temporal resolution of the global urban 
datasets utilized was heterogeneous. To sustain a 
certain stability and consistency, it was ensured that 
a comparable time span could be used for the cali-
bration of the SLEUTH UGMr, while having a third 
independent dataset for the CA validation (Fig. 6). 
To achieve this, a minimum calibration period was 
chosen as 2012–2014, as it was covered by all data-
sets. Table 3 shows the growth coefficients and MRV
mean factors of agreement for all resolutions (Ft) of 
the calibrated SLEUTH UGMr models. It presents 

distinct calibration periods and the results of the 
calibration process. The three most relevant coeffi-
cients for driving the SLEUTH UGMr (CLARKE et 
al. 1997b) are also depicted. Since the scale is 0–100 
the calibrated values are quite low compared to other 
regions of the world which experience higher ur-
banization rates (CHAUDHURI & CLARKE 2013). The 
spread coefficient (representing the growth of urban 
edges), controls the distribution of the largest por-
tion of newly urbanized pixels. The GHSL depicts 
the lowest amount of edge growth (spread value 4), 
whereas the OSM-based models depict the highest 
number of newly urbanized cells in the neighbor-
hood of existing cells (spread value 19). The OSM-
based model calibrated from 2012 to 2017 must be 
used with caution, as the mapping activities have 
only recently begun (Fig. 3). This means that new ur-
ban areas should be simulated, but although they can 
already be observed in reality, they are not yet in the 
database. The more recent the OSM data, the more 
reliable it becomes. However, all the models showed 
MRV values > 95%.

4.3 SLEUTH UGMr validation

Table 4 presents the validation results for the 
SLEUTH model. The datasets used for validation 
were not used in the calibration process. Accordingly, 
the validation periods differed from the calibration 
periods, but the calibrated coefficients were main-
tained. For the GHSL-based CA, 10 additional in-
dependent years could be used through an earlier 
start year than calibrated and 14 years overlap with 
the calibration period (Fig. 6). For the WSF-based 
CA, five additional independent years could be used 
through an earlier start year than calibrated, but 
there was no overlap with the calibration period. For 
the LBM-DE-based CA, three additional independ-
ent years could be used through a later end year than 
calibrated, and three years overlapped with the cali-
bration period. For OSM I-based CA, five addition-
al independent years could be used through a later 
start year than calibrated, and there was no overlap 
with the calibration period. Finally, for the OSM II-
based CA, five additional independent years could 
be used through an earlier start year than calibrated, 
but there was no overlap with the calibration peri-
od (Fig. 6). Barring the Ft-value utilized, the MRV
was used to compare the simulated map with a “null 
model,” which is a map containing the initial settle-
ment pattern of each validation start year. Hence, it 
was considered to be map of mere urban persistence 
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Fig. 5: Top: Comparison of  urban classes in the different data sets (base year 2014/2015) and settlement development of  
the Ruhr 1975–2022 accordingly. Bottom: Urban coverage and potential misses (transparent) by the particular data sets 
2014/2015 in the city of  Dortmund. The OSM data set 2022 (d) reflect the ongoing mapping activities (base map: digital
orthophoto 2015, Geobasis NRW).
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with no urban growth in that period (PONTIUS et al. 
2008, PONTIUS & MALIZIA 2004, VISSER 2004). The 
resolution level where the agreement factor of the 
land-use model outperforms the null model for the 
first time, is called “null resolution.” The higher the 
null resolution, the better the land-use model per-
formance. All Ft-values were lower than those in the 

calibration runs, but still reached a level > 90%. The 
MRV results showed an overall accuracy with an ex-
cellent level of agreement. This can be attributed to 
the ability of all the models to predict the location 
and quantity of non-urban cell states extremely well. 
This is emphasized by the specificity values and false 
positive rates. 

GHSL

WSF Evo

LBM-DE

OSM-I

OSM-II

19
90

19
95

20
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20
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20
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calibration period validation period overlap of calibration and validation period

Fig. 6: Calibration and validation periods

Tab. 3: Growth coefficients and MRV mean factor of agreement over all resolutions (Ft) 

Coefficient GHSL
(2000–2014)

WSF Evo
(2010–2015)

LBM-DE
(2009–2015)

OSM I 
(2012–2017)

OSM II
(2017–2022)

Spread 4 7 12 63 19

Dispersion 7 10 4 66 11

Breed 27 13 11 69 20

Ft calibration 0.989 0.995 0.975 0.962 0.969

Tab. 4: Validation indices of  the SLEUTH UGMr models

Validation index GHSL
(1990–2014)

WSF Evo
(2005–2010)

LBM-DE
(2012–2018)

OSM I
(2017–2022)

OSM II 
(2012–2017)

Ft validation 0.961 0.990 0.980 0.916 0.955

MRV null resolution (m) 1,920 3,840 122,880 30 15,360

Kappa 0.887 0.971 0.954 0.793 0.883 

Fuzzy Kappa 0.937 0.987 0.968 0.872 0.917 

Kappa quantity 0.968 0.995 0.987 0.897 0.991 

Kappa location 0.917 0.976 0.967 0.883 0.891 

TP 1,222,987 1,175,306 1,712,415 1,264,185 1,248,206

TN 3,485,923 3,702,856 3,117,264 3,238,753 3,453,980

FP 78,098 30,934 66,782 321,530 106,303

FN 140,799 21,417 36,643 108,636 124,615

sensitivity 0.897 0.982 0.979 0.921 0.909

false negative rate 0.103 0.018 0.021 0.079 0.091

specificity 0.978 0.992 0.979 0.910 0.970

false positive rate 0.022 0.008 0.021 0.090 0.030
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Overall, the WSF-based CA data demonstrated 
the best performance. The GHSL-based CA had the 
lowest sensitivity value and the highest false negative 
rate, but also covered the longest modeling period. 
The LBM-DE-based CA data barely outperformed 
its null model. The interpretation of the null model 
comparison was heavily dependent on the observed 
urban growth. The higher the observed growth, the 
more likely that the null model was outperformed, 
because the effect of locational errors was lower 
than the effect of quantity errors. In scenarios with 
low urban growth, the opposite occurred. The LBM-
DE datasets showed a decrease in settlement areas 
for 2012–2015 and 2012–2017. Accordingly, the 
SLEUTH UGMr simulates only growth model, and 
it cannot simulate shrinkage. However, it reaches a 
good modeling accuracy when using the LBM-DE
dataset. The OSM-I-based CA was the only model 
which reached a null resolution of one. Since the 
OSM mapping activities were still in their infancy 
in 2012, it might be that new settlements in 2015 
were not new but rather only recently mapped. In 
addition to accuracy measurements, the uncertainty 
of CA needs to be assessed, such as for the UGMr 
(CLARKE 2004, TIMMERMANS 2003, WEGENER 2011). 
A proven procedure is the application of 100 Monte 
Carlo simulation runs reflecting the probability of 
each cell to be urbanized during the geosimulation 
(AERTS et al. 2003, WEGENER 2011). The models 
simulated the settlement patterns of 2030 100 times. 
Figure 7 shows a violin plot of the resulting distri-
butions of selected urban cells. It ranges from 1 to 
99, since 0 represents “not selected as urban after 
100 MC simulation runs” and 100 represents “cell 
already urban in the start year of the simulation”. 
The plot includes the minimum, maximum, sample 
median, first, and third quartiles, as well as the prob-

ability densities of the different models. The OSM-I 
model distributed more pixels in the same location 
than any other model after 100 runs. Simultaneously, 
it showed more randomly selected pixels (i.e., low 
Monte Carlo simulation run values) than the other 
models. In addition, the OSM-I model showed the 
lowest median, whereas the OSM-II model showed 
the highest. The only other model that performs as 
well as OSM-II was the WSF-based CA.

4.3 Settlement simulation 2030

Figure 8 depicts the allocation of new settle-
ment areas in regions of HQ-frequent (flooding) 
areas, and in areas with potential for heat stress. It 
clearly varies between datasets. This indicates that 
geosimulation model outcomes utilized in spatial 
planning should avoid rigorous normative messages 
without discussing the input data that has been used 
in the models. 

Table 5 shows the number of new settlements 
simulated by the CA SLEUTH UGMr, after calibra-
tion and validation, using different urban data input. 
The Ruhr covers an are of 4,439 km2. The area of 
new settlements in future simulations reached be-
tween 40.77 km2 to 477.91 km2, demonstrating the 
effect of the coefficients used in calibration of dif-
ferent datasets. The number of new settlements dif-
fers in absolute numbers in all CAs and within areas 
affected by floods and heat stress. The percentage of 
new settlements simulated in areas affected by fre-
quent floods was very similar in the models, includ-
ing the OSM I-based model, which overestimated 
urban growth owing to the higher observed growth 
numbers from 2012 to 2015. However, this did not 
hold true for areas with a potential for heat stress. 

Fig. 7: Violin plot depicting the outcome 100 Monte Carlo simulation 
runs of the five CA

Number of new urban cells selected after 100 Monte Carlo simulation runs
0 20 40 60 80 100
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The LBM-DE-based SLEUTH UGMr showed the 
lowest absolute and relative values, while the OSM-
I-based SLEUTH UGMr had the highest absolute 
value. The WSF Evo-based SLEUTH UGMr had the 
highest relative values, despite showing the lowest 
quantity of urban cells in the start and end years of 
the simulation. 

5 Discussion 

This study validated the allocation and quantity 
estimation capacities of OSM-based models com-
pared to models based on global urban data sets and 
on a national data set (Fig. 6). The applied model, 
SLEUTH-UGM, is a cellular automaton-based urban 

Fig. 8: The allocation of new settlement areas in regions of HQfrequent areas (i.e., flood affected areas), in areas with a
potential for heat stress, and both HQfrequent and potential for heat stress depicted for the city of  Duisburg in the Western 
Ruhr Area.

thermally affected

HQfrequent

both
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growth model widely used for predicting urban ex-
pansion. One of its key advantages lies in its sim-
plicity and ease of implementation, particularly for 
regions with limited data availability or computa-
tional resources. SLEUTH relies on straightforward 
input parameters such as boolean urban informa-
tion, slope, roads, and restricted areas are making 
it accessible to a broad range of users (Clarke et al. 
2007). However, compared to other machine learn-
ing or deep learning-based approaches, SLEUTH has 
several limitations. Firstly, it may struggle to capture 
complex spatial interactions and non-linear relation-
ships inherent in urban growth processes. Machine 
learning algorithms, such as random forests or neu-
ral networks, can often better accommodate these 
complexities, leading to more accurate predictions 
(Rienow et al. 2021). Secondly, SLEUTH’s perfor-
mance may degrade in rapidly changing urban en-
vironments or regions with unique characteristics 
not captured by its simplistic input parameters. In 
contrast, machine learning and deep learning mod-
els can adapt more flexibly to diverse contexts and 
evolving patterns, potentially yielding more robust 
predictions over time (LIU et al. 2020a).

The calibrated growth coefficients differed, 
leading to different growth rates. The datasets 
used for the calibration were from the same source; 
therefore, consistency can be guaranteed so that 
every model delivered the best performance based 
on the input urban datasets. Furthermore, overlap 
between the calibration and validation periods was 
avoided or reduced to the possible minimum. The 
data sets differed in terms of temporal resolution, 
coverage, and data end dates; therefore, an overlap 
between the datasets was required (2012–2014). 
Historic OSM data showed false-negative observa-
tions of urban growth owing to missing mapping ac-
tivities, which lead to a potential overprediction of 
new urban areas in the future (Fig. 6). Accordingly, 
the study tested two calibration periods, which 
demonstrated the importance of choosing the cor-
rect start year for the OSM-based geosimulation. 
An important consideration in studies is the defi-
nition of what is considered to be urban and what 
is considered non-urban. The global earth obser-
vation-based datasets (GHSL and WSF Evolution) 
used in this study focused on urban land cover (i.e., 
primarily impervious surfaces). The administrative 

Tab. 5: Settlement growth simulated by the SLEUTH UGMr models and allocation 2030 

GHSL WSF Evo LBM-DE OSM I OSM II

Starting year of  simulation 2014 2015 2018 2022 2022

Settlements observed (km2) 1,227.41 1,103.96 1,574.15 1,233.56 1,233.56

Settlements simulated (km2) 2030 1,284.73 1,191.34 1,614.92 1,711.47 1,354.75

Settlement growth simulated (km2) 2030 57.32 87.37 40.77 477.91 121.90

Settlement growth simulated (%) 2030 4.66 7.91 2.25 38.74 9.88

Settlement growth simulated in 
HQfrequent areas (km2) 2030

3.10 4.75 3.24 32.08 7.81

Settlement growth simulated in 
HQfrequent areas (%) 2030

5.41 5.43 7.95 6.71 6.44

Settlement growth simulated in areas 
with a potential for heat stress (sq. km) 
2030

9.60 15.23 0.25 40.49 18.41

Settlement growth simulated in areas 
with a potential for heat stress (%) 2030

16.74 17.42 0.62 8.47 15.19

Settlement growth simulated in 
HQfrequent areas and areas with a 
potential for heat stress (sq. km) 2030

0.51 0.79 0.03 1.98 0.86

Settlement growth simulated in 
HQfrequent areas and areas with a 
potential for heat stress (%) 2030

0.89 0.90 0.064 0.415 0.70

Noet: Red values represent the minimum, blue values the maximum.
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data (LBMDE) and OSM-derived data also consid-
ered urban land uses, such as urban recreational 
areas and leisure facilities. Open spaces within an 
urban area were the first to experience edge expan-
sion, which is the most dominant growth type of 
CA. This could explain why the WSF-and GHSL-
based CA allocated more new urban pixels in ar-
eas with a less favorable / unthermal conditions, in 
2030 simulations. 

While SLEUTH-UGM is widely recognized for 
its effectiveness in simulating urban growth pat-
terns, it’s essential to acknowledge that no single 
model is universally superior in all contexts. CA
models, for instance, are renowned for their sim-
plicity and computational efficiency, making them 
suitable for large-scale applications. However, they 
often struggle to capture the complexities of urban 
processes, such as socioeconomic dynamics and 
land-use interactions. On the other hand, agent-
based models (ABM) excel in representing individual 
behaviors and interactions, offering a more detailed 
and realistic portrayal of urban growth dynamics. 
Nonetheless, they can be computationally intensive 
and require extensive parameterization and valida-
tion efforts. However, it’s crucial to recognize that 
each modeling approach has its strengths and limi-
tations, and the choice of model should align with 
the specific research objectives and data constraints 
of the study area. Furthermore, integrating multi-
ple modeling techniques, such as combining CA
models with ABM, can offer synergistic benefits, 
enhancing the accuracy and comprehensiveness of 
urban growth predictions. Thus, while the findings 
provide valuable insights into the performance of 
SLEUTH-UGM, a holistic understanding of urban 
growth dynamics requires consideration of a diverse 
range of modeling approaches and methodologies.

6 Conclusion

This study calibrated, validated, and imple-
mented an urban CA based different global LULC
products and compared satellite-based, VGI-based, 
and administrative data sets for regional modeling 
purposes. The OSM-based CA and its simulation 
capacities were compared with two well-known 
satellite-based datasets, WSF Evo and GHSL, and a 
national administrative land cover dataset. The het-
erogeneous datasets have been harmonized so that 
the SLEUTH UGMr could be set up and the future 
urban growth of Ruhr was simulated until 2030. All 
models achieved high calibration and validation ac-

curacy. The OSM-based CA was calibrated with the 
most recent datasets. The WSF-based CA showed 
a higher certainty than the other three Cas which 
were tested. The older the OSM data, the higher the 
probability of type-I errors (false positives). The 
global WSF-Evo dataset outperformed the national 
LBM-DE dataset. The latter met the null resolution 
only at a level where one pixel was approximately 
the same size as the entire study area. The four CAs 
behaved differently in terms of growth coefficients, 
leading to a variation in the quantity of future set-
tlement growth between 40.77 km2 (LBM-DE) and 
477.91 km2 (OSM-I). The higher the simulated ur-
ban growth, the higher the absolute number of new 
settlements within areas affected by environmental 
hazards, such as floods and heat stress. All models 
relatively allocated a similar size of new settlement 
areas affected by floods; however, they varied with 
respect to thermal conditions.

The study demonstrates the sensitivity of urban 
models when it comes to their input data, and in 
this study specifically, boolean global urban data-
sets. Environmental planning and hazard monitor-
ing in metropolitan areas rely on predictions based 
on urban growth models. The key finding of this 
study is that scientifically evaluated and approved 
data sets still lead to different outcomes in urban 
modeling and may affect the measurements by 
evidence-based decision making. Future research 
needs to focus on the definition of “urban” in 
global products. For example, while some products 
exclusively incorporate impervious surfaces, others 
also incorporate inner urban green areas. In addi-
tion, it is necessary to know how the nature of ur-
ban input data and the associated potential future 
patterns might affect environmental evaluation 
studies and results.

Data availability

The data that support the findings of this study 
are openly available in RUB GitLab repository 
“Forecasting Urban Futures – Data” at https://git-
lab.ruhr-uni-bochum.de/rienoat4/forecasting-ur-
ban-futures-data, reference number 3170.
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