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Summary: Tropical highlands remain a challenging target for remote sensing due to their high heterogeneity of  the land-
scape and frequent cloud cover, causing a shortage of  high-quality and reliable comprehensive data on land use and land 
cover on a local or regional scale. These, however, are urgently needed by local stakeholders and decisionmakers. This applies 
for example to the Muringato sub-catchment in Nyeri County, Kenya, where acute water problems have been identified to 
be usually directly related to specific land use and land cover. This article contributes to the understanding of  tropical high-
lands from a remote sensing perspective by examining Sentinel-1, Sentinel-2 and Global Forest Canopy Height Model data 
from the Global Ecosystem Dynamics Investigation, all provided by the Google Earth Engine. To do so, we assess classifiers 
derived from these datasets for different land cover types, analyzing the performance of  promising candidates identified 
in the literature, using 2,800 samples extracted from high-resolution image data across Nyeri County. We also propose an 
object-based classification strategy based on sequential masking. This strategy is adapted to very heterogeneous landscapes 
by refining image objects after re-evaluating their homogeneity. Small buildings, which constitute a significant part of  the set-
tlement structure in the area, are particularly difficult to detect. To improve the recognition of  these objects we additionally 
consider the local contrast of  the relevant classifier to identify potential candidates. Evaluating our sample data, we found 
that especially optical indices like the Sentinel Water Index, the Enhanced Normalized Difference Impervious Surfaces 
Index or specific Sentinel-2 bands combined with canopy height data are promising for water, built-up or tree cover detec-
tion. With these findings, our proposed object-based classification approach is applied to the Muringato sub-catchment as a 
representative example of  the Kenyan tropical highland region. We achieve a classification accuracy of  approximately 88% 
in the Muringato sub-catchment, outperforming existing products available for the study area. The knowledge gained in the 
study will also be used for future remote sensing-based monitoring of  the region.

Zusammenfassung: Das tropische Hochland ist aufgrund großer Heterogenität der Landschaft und der häufigen Bewöl-
kung nach wie vor ein schwieriges Ziel für die Fernerkundung, woraus ein Mangel an hochwertigen, zuverlässigen und um-
fassenden Daten über Landnutzung und Bodenbedeckung auf  lokaler oder regionaler Ebene in diesen Regionen resultiert. 
Dies gilt beispielsweise auch für das Teileinzugsgebiet Muringato in Nyeri County, Kenia, wo akute Wasserprobleme meist 
direkt auf  die Landnutzung und Bodenbedeckung zurückzuführen sind. Dieser Artikel trägt zum Verständnis des tropischen 
Hochlands aus der Perspektive der Fernerkundung bei, indem er von der Google Earth Engine bereitgestellte Daten von 
Sentinel-1, Sentinel-2 und des Global Forest Canopy Height Model aus der Global Ecosystem Dynamics Investigation 
untersucht. Zu diesem Zweck bewerten wir aus diesen Datensätzen abgeleitete Klassifikatoren für verschiedene Land-
bedeckungsarten und analysieren die Leistung vielversprechender, in der Literatur identifizierter Kandidaten anhand von 
2800 Stichproben, die aus hochauflösenden Bilddaten von Nyeri County extrahiert wurden. Außerdem schlagen wir eine 
objektbasierte Klassifizierungsstrategie vor, die auf  sequenzieller Maskierung basiert. Diese Strategie ist an sehr heterogene 
Landschaften angepasst, indem Bildobjekte nach der Generierung hinsichtlich ihrer Homogenität bewertet gegebenenfalls 
neu auf  einer feineren Ebene segmentiert werden. Ergänzend werden kleine Gebäude, welche einen bedeutenden Teil der 
Siedlungsstruktur in diesem Gebiet ausmachen und besonders anspruchsvoll zu erkennen sind, zusätzlich mit mithilfe des 
lokalen Kontrastes des entsprechenden Klassifikators identifiziert. Bei der Auswertung unserer Stichproben haben wir fest-
gestellt, dass insbesondere optische Indizes wie der Sentinel Water Index, der Enhanced Normalized Difference Impervious 
Surfaces Index oder bestimmte Sentinel-2-Bänder in Kombination mit Daten zur Vegetationshöhe vielversprechend für die 
Erkennung von Wasser, Bebauung oder Baumbedeckung sind. Unter Berücksichtigung dieser Erkenntnisse wenden wir den 
von uns vorgeschlagenen Klassifizierungsansatz auf  das Teileinzugsgebiet Muringato an, welcher als repräsentatives Beispiel 
für die tropische Hochlandregion Kenias dient. Dabei erzielen wir eine Klassifizierungsgenauigkeit von ca. 88 % und über-
treffen damit die für das Untersuchungsgebiet bislang verfügbaren Produkte. Die in der Studie gewonnenen Erkenntnisse 
werden für die künftige fernerkundungsbasierte Überwachung der Region genutzt.
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tropical highlands
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1 Introduction

The Muringato sub-catchment in Nyeri County, 
Kenya, is a tropical highland region where accu-
rate land surface data are urgently needed. The lo-
cal Water Resources User Association (WRUA) re-
leased a Sub-Catchment Management Plan (SCMP) 
in 2014, highlighting the region’s most pressing 
water resource challenges. Most of these problems 
are directly related to poor land use practices or 
unfavourable changes in land cover such as defor-
estation or unsuitable farming methods (MurinGaTo 
waTer resource user associaTion 2014), which 
have accelerated in sub-Saharan Africa over the last 
two decades (Thonfeld et al. 2020). In response, 
a baseline data survey was undertaken in February 
2018 (IGGReS 2018). This inventory was a first step 
in characterising the sub-catchment to support de-
cision making regarding the specific water-related 
problems in Muringato. However, given that the 
situation is known to be particularly dynamic and 
regular in-situ data acquisition is not practical or 
economical, automated and repeatable methods are 
needed to support the work of the local WRUA and 
to efficiently monitor the constant changes across 
this large region of approximately 225 km² in size.

Remote sensing can be used to complement ex-
isting sources for data acquisition and may be the 
only practicable option when dense in-situ meas-
urement networks are not available (sheffield et 
al. 2018). Several land use and land cover (LULC) 
products of continental or global coverage already 
exist encompassing a range of different resolutions. 
This includes the ESA WorldCover (10 m), ESA CCI 
Landcover (20 m), Copernicus Global Land Cover 
(100 m), and the ESA GlobCover (300 m). However, 
these kinds of products tend not to accurately depict 
the regional characteristics of heterogeneous and dy-
namic regions such as tropical highlands (schulz et 
al. 2021, nabil et al. 2020). Studies on LULC used to 
rely predominantly on Landsat data, given that it is 
the only earth observation system encompassing the 
last 45 years (Thonfeld et al. 2020). This is advanta-
geous for creating historical time series datasets but 
not may be optimal for tracking small targets due to 
the 30 m spatial resolution.

Higher spatial resolution can be achieved us-
ing data from the European Space Agency’s (ESA) 
Copernicus Sentinel-2 mission (drusch et al. 
2012), which also offers superior spectral resolution 
from the near infrared spectrum regions with its 
Multispectral Instrument (MSI) (Kaplan & avdan 
2018). Sentinel-2 is a two-Satellite constellation 

(Sentinel-2A and Sentinel 2B) which systematically 
acquires observations from land and coastal areas 
from 56° south to 84° north with a frequent revisit 
time at the equator of five days (drusch et al. 2012). 
Despite this improvement in resolution, the accuracy 
of mapping products for Africa often remains unsat-
isfactory due to highly challenging conditions. High 
levels of landscape heterogeneity, frequent cloud 
cover, and small sized farmland, which is common 
in African agriculture, are the main causes of un-
certainties in land use and land cover (LULC) prod-
ucts for many African countries (nabil et al. 2020, 
KuMar & reshMidevi 2013, béGué et al. 2020).

Therefore, it may be advisable to increase the 
data density and add additional levels of informa-
tion by using additional sources and complementary 
sensor types. Due to the high level of cloud occur-
rence in tropical highlands, weather-independent 
microwave sensors such as ESA’s Sentinel-1 C-band 
synthetic aperture radar (SAR) seem a logical choice 
(Kaplan & avdan 2018, nabil et al. 2020, Torres 
et al. 2012). Sentinel-1 is also a two-Satellite constel-
lation (Sentinel-1A and Sentinel 1B) following a pre-
programmed conflict-free scenario mapping global 
landmasses with a six day repeat cycle at the equator 
(Torres et al. 2012). Several studies have highlighted 
potential benefits of synergistic Sentinel-1-SAR and 
Sentinel-2-MSI for use in other cases and landscapes 
including mapping impervious surfaces in Pakistan 
using a random forest machine learning classifier 
(shresTha et al. 2021), wetlands in Turkey using 
a supervised object-based classification approach 
(Kaplan & avdan 2018), and creating segmentation 
maps for water, bare soil and rice plants in Spain us-
ing a deep leaning approach (GarGiulo et al. 2020)). 
The main advantages indicated are an improvement 
in classification accuracy and the possibility to fill 
data gaps caused by cloudiness.

Another instrument that has recently received 
a lot of attention in remote sensing-based envi-
ronmental studies is the National Aeronautics and 
Space Administration (NASA) Global Ecosystem 
Dynamics Investigation (GEDI). This is a full-
waveform Light Detection and Ranging (LiDAR) 
sensor attached to the International Space Station 
(ISS). GEDI has been operating since April 2019 
and samples the characteristics of vegetation struc-
ture almost globally from approximately 51.6º S to 
approximately 51.6ºN. GEDI is designed to sample 
information on topography, object height, and vari-
ous relative height metrics (RH) (Kacic et al. 2021, 
pereira-pires et al. 2021, dubayah et al. 2020). 
Therefore, it offers a chance to include additional 
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information in the classification process on the ver-
tical structure of the vegetation which can be chal-
lenging to access for the tropics. The most practi-
cal and reproducible way to include GEDI data is 
to use analysis-ready follow-on products like the 
Global Forest Canopy Height Product 2019 (GFCH) 
(poTapov et al. 2021). The dataset combines Landsat 
and GEDI data to obtain elevation values for areas 
covered by vegetation, thereby providing a potential 
substitute to costly and often unavailable digital sur-
face models in developing and emerging countries.

Combining various dataset types and increasing 
spatial resolution also leads an increase in complex-
ity for the analysis. Therefore, strategies for solv-
ing issues related to mixed signal pixels are needed 
(nabil et al. 2020). Object-based image analysis 
methods (OBIA) group neighbouring single meas-
urement pixels into image objects that comprise 
real-word objects, thus taking contextual features 
into account (blaschKe 2010, KucharczyK et al. 
2020). Comparative studies indicate that this also 
holds great potential for improving accuracies in 
Sentinel-2-based classification attempts (phiri et al. 
2020). However, many studies on object-based clas-
sification are specifically adapted to their respective 
study areas and derive inconsistent results for other 
regions (Ma et al. 2017). An important considera-
tion in this context is that object-based approaches 
typically rely on image segmentation as a crucial 
prerequisite, which strongly depends on the scale of 
the investigation (iM et al. 2014, hao et al. 2021). 
While some studies focus on the determination of 
an optimal scale for a specific target or dataset (Qiu 
et al. 2016, wiTharana & civco 2014, yanG et al. 
2019), heterogeneous tropical highlands, however, 
are often composed of areas that actually need to 
be addressed at different scales. For example, con-
tiguous surface types in Nyeri’s rural areas tend to 
be considerably smaller than those in the national 
parks. Consequently, not only the optimal features 
for characterising the area are relevant, but also 
an adapted segmentation strategy to meet the het-
erogeneous environment in Muringato and similar 
regions.

In this paper, we assess the potential of Sentinel-
2-MSI alongside the near-globally available Sentinel-
1-SAR and GFCH-datasets to be used in a predomi-
nantly automated and object-based mapping strat-
egy for heterogeneous tropical highland landscapes. 
To achieve this, we (i) examine possible classifica-
tion features that can be derived from these datasets 
and (ii) develop a classification strategy that aims 
at Muringato’s characteristics as a heterogeneous 

tropical highland and could potentially be applied 
to similar regions.

To generate suitable data for the study area 
(Section 2) several pre-processing steps were un-
dertaken on a range of datasets using the Google 
Earth Engine (GEE) cloud platform. This included 
advanced cloud masking and mosaicking for gener-
ating comprehensive optical imagery as well as ad-
vanced border noise reduction, radiometric terrain 
normalization, and speckle filtering for the SAR 
data (Section 3.1). We present the class nomencla-
ture for our monitoring concept, generate matching 
sample image objects using the pre-processed data, 
and present validation data for our classification 
strategy (Section 3.2). We elaborate on possible clas-
sification features for use from the datasets available 
(Section 3.3) and analyse our samples from across 
the Nyeri County from the dry seasons in 2020 and 
2021 regarding these features (Section 3.4). The 
findings were then incorporated in the customized 
 object-based classification process and were applied 
to the Muringato sub-catchment (Section 3.5). The 
results of the study are presented, examined regard-
ing their accuracy using our validation data, and 
briefly compared to a novel global product based on 
Sentinel (Section 4). We will discuss the approach 
presented (Section 5), which will form the basis for 
permanent monitoring in this region.

2 Study area

Nyeri County is approximately 80 km north of 
Nairobi in the highlands of central Kenya between 
Aberdare Range in the west and Mount Kenya in 
the east. The Muringato sub-catchment lies in the 
mid-western part of the county and forms part of the 
Tana Basin, which is one of Kenya’s five main basins. 
The area encompasses parts of the Aberdare Range 
National Park and the Kimathi, Muhoya, Kamakwa, 
Kiganjo, Mukaro, and Mweiga areas comprising a to-
tal area of 225 km². The city of Nyeri borders the area 
to the southeast. The Locations of Nyeri County and 
the Muringato sub-catchment is displayed in Fig. 1.

The region is characterized by a tropical climate 
and two rainy seasons with long rains from March 
to May and short rains from October to December, 
and is therefore affected by frequent cloud cover. 
The present LULC types cover large scale farming 
of mostly tea and coffee and small-scale farming 
mainly encompassing maize and beans (MurinGaTo 
waTer resource user associaTion 2014). There are 
also urban and rural built-up structures, bare land, 
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and open water, as well as different forest types, and 
shrublands and grasslands of varying sizes. This in-
cludes larger vegetation formations in the national 
park and smaller formations in the inhabited rural 
areas, which are generally structured much more het-
erogeneously. This composition of land cover types 
and the general structure of a relatively homogene-
ous national park or forest reserve component, either 
Aberdare or Mt. Kenya, and the lower lying relatively 
heterogeneous rural structures can also be observed 
in all sub-catchments of Nyeri. Therefore, we con-
sider Muringato as a representative example of the 
highland region.

3 Data and methods

3.1 Data acquisition and pre-processing

Data selection and pre-processing was performed 
using the Google Earth Engine cloud computing 
platform (GEE) (GorelicK et al. 2017) which has 
been used successfully for environmental studies 
such as mapping wetlands (hardy et al. 2020), floods 
(devries et al. 2020), and vegetation cover (Xie et al. 
2019). The process is summarized in Fig. 2.

Sentinel-2-MSI scenes are available as Level-2A 
Bottom of Atmosphere (BOA) products in GEE, which 

Fig. 1: Sentinel-2 image composite outlining Nyeri County and the Muringato sub-catchment in 2021 (RGB: B8, B4, B3). 
Administrative boundaries: Food and Agriculture Organization of  the United Nations.
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are analysis-ready orthoimages corrected for atmos-
pheric effects using the Sentinel-2-specific Sen2Cor-
algorithm (Main-Knorn et al. 2017). However, fre-
quent cloud cover still significantly affects data quality 
and availability in the mountainous study area even 
during dry seasons. To obtain comprehensive images, 
we fused data available data for 2020 and 2021 on a 
biannual basis, resulting in a total of four per-pixel-
median images for the analysis of optical classification 
features. When possible, we used only dry seasons 
images with less than 20% total cloud coverage to 
prevent artifacts from highly cloudy, foggy, or hazy 
scenes. Due to exceptionally high cloud cover dur-
ing the second dry season in 2021, the threshold was 
increased to 25% and additional rainy season images 
were considered to compile a spatially comprehensive 
dataset. All eligible scenes have been individually pro-
cessed using advanced cloud and cloud shadow mask-
ing techniques as outlined in (braaTen 2022) with 
priority given to the removal of clouds and shadows 
(pixels with a cloud or shadow probability over 5%) 
over conserving ambiguous pixels.

Sentinel-1-SAR data in GEE are orthorectified 
Ground Range Detected (GRD) scenes with ther-
mal noise removal, radiometric calibration, and ter-
rain correction already having been applied. The 
values (x) are converted to decibels (dB) through 
log scaling (Eq. (1)):

dB = 10 * log10 (x)   (1)

As recommended for land monitoring by the 
ESA S-1 observation strategy, the GRD-Data used in 
this study was obtained in interferometric wide (IW) 

swath mode with 240 km swath, which supports 
dual-polarization with VV and VH bands (shresTha 
et al. 2021). To improve the data quality and to an-
ticipate terrain-related difficulties, an additional 
pre-processing framework was used as described by 
(Mullissa et al. 2021). Besides radiometric terrain 
normalization, the framework includes additional 
border noise reduction as well as multiple options 
for speckle filtering and can be directly applied in 
GEE. Following the suggestions of (verhelsT et al. 
2021), an improved Lee Filter (lee et al. 2009) was 
used in this study for speckle filtering. SAR data was 
selected to be in the middle of the period covered by 
each optical dataset, as they are intended for joint use 
instead of filling gaps in the rainy season.

The GFCH data is ready to use and does not re-
quire further pre-processing. Combining the data-
sets results in a stack of orthorectified measurements 
from the various sensors in gridded format. An over-
view of the data with their respective gridded spatial 
resolution is given in Table 1. 

3.2 Class design, sample and validation data

Based on the available datasets, the main land 
cover types should be identified, namely water, tree 
cover, shrubs, lower vegetation (dense and sparse), 
built-up areas, and bare land (Tab. 2). These classes 
are assumed to be sufficient to form a basis for the 
description of changing environmental resources 
including deforestation, human land-use intensifica-
tion, loss of waterbodies, and agricultural use once 
the concept is transferred into monitoring and regu-

Fig. 2: Data preprocessing
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lar maps are produced on a semi-annual basis. This 
class nomenclature is relatively general and excludes, 
for example, specific tree species to avoid unneces-
sary sources of error and ensure a level of transfer-
ability for the concept.

For our study, we created two complementary 
datasets aligned with this class design: a sample data-
set was utilized to assess the effectiveness of poten-
tial classification features, while a validation dataset 
of ground truthing points was used to verify the ac-
curacy of our classification approach in our primary 
study area: the Muringato sub-catchment.

The Sample dataset comprises 700 sample data 
objects across Nyeri County for each semi-annual 

image stack to cover different periods, allowing for 
a meaningful number of samples while keeping spa-
tial bias low, so that the findings can, in principle, 
also be applied to other catchments. These objects 
were obtained by manually delimiting and visual-
ly interpreting the optical data, along with the aid 
of higher resolution imagery from Google Earth. 
Consequently, a total of 2,800 samples were ob-
tained for feature evaluation. Since this work was 
carried remotely, only objects that could be clearly 
identified and delimited in the image material were 
considered as the risk of incorrect assignment of 
classes due to subjective errors was considered too 
great. Therefore, we also did not collect samples for 
transitional classes ‘Sparse vegetation’ and ‘Shrubs’, 
as these are not clearly identifiable in the images. 
Instead, we assume that they fall between the ‘Tree 
cover’ and ‘Low vegetation’ classes or the vegetation 
classes and non-vegetation, respectively.

For validation purposes, an additional total of 
556 independent and randomly distributed ground 
truthing data points using the complete class no-
menclature were collected across the Muringato 
sub-catchment area during a fieldwork campaign in 
early December 2021. Ground Truthing points in 
restricted areas that were not accessible during this 
work were interpreted using a Maxar orthoimage 
with a resolution of 50 cm as a substitute. This af-
fects largely the western part of the area that is part 
of the Aberdare National Park.

3.3	 Possible	classification	feature	overview

Given that the aggregation of optical data from 
several scenes can also be expected to introduce some 
smoothing, it is particularly important to derive ro-
bust features that work effectively with the median 
mosaics. Since there are no specific investigations on 
this matter, different indices and specific band com-
binations given in the literature were considered.

Tab. 1: Pre-processed datasets used in this study

Spatial Resolution [m] Band Sensor

10

VV, VH, (VV+VH)/2 S1-SAR

blue (B2), red (B3), red (B4), 
near infrared (B8) S2-MSI

20
red edge (B5, B6, B7, B8a)

short wave infrared (B11, B12) S2-MSI

30 Global Forest Canopy Height LiDAR (GEDI) + optical (Landsat)

Tab. 2: Target class descriptions.

Landcover Type Description

Tree cover forest, dense tree crowns

Shrubs
larger shrubs and bushes, young 

trees, shrub-like crops (e.g., 
coffee)

Low vegetation

dense grass, vital low grown 
crops (e.g., tea), forbs, herbs, very 

small shrubs, young secondary 
vegetation

Sparse vegetation
low vegetation cover, crops with 

lesser photosynthetic activity (e.g., 
young maize, potatoes, beans)

Bare land

open soil, bare or freshly 
cultivated cropland, rocks, 

quarries, minor sealed surfaces, 
burnt areas

Built-up settlements, buildings, larger 
sealed surfaces

Water
water holes, water reservoirs, 

sewage treatment plants
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Numerous water bodies in Nyeri County are 
of small size and highly dynamic including water 
holes with fluctuating levels composed of only a 
few pixels. This requires a highly robust approach 
for successful capture. Methods for water detec-
tion predominantly require the use of specific indi-
ces such as the Normalized Difference Water Index 
(NDWI) and the Modified Normalized Difference 
Water Index (MNDWI) (Xu 2006, du et al. 2016, 
seKerTeKin et al. 2018)) or sensor-specific variants 
including the Sentinel-2 Water Index (SWI) (JianG 
et al. 2020, JianG et al. 2021). These indices highlight 
water by relating two spectral bands and are calcu-
lated as shown in Eq. (2), (3) and (4):

NDWI = B3 - B8 / B3 
+ B8 

(2)

MNDWI = B3 - B11 / B3 + B
11 

(3)

SWI = B5 - B8 / B5 + B8 
(4)

Sentinel-1-SAR can also be used for rapid 
mapping under cloudy conditions because of the 
relatively low backscatter from the waterbodies 
(nasirzadehdizaJi et al. 2019, zhenG & shao 2018)).

The presence of vital vegetation is most widely 
tracked using the Normalized Difference Vegetation 
Index (NDVI) in remote sensing. Compared with 
other indices, it is sensitive to soil and shadow in-
fluences and has a sensitive response even for low 
vegetation cover (Xue & su 2017). Therefore, it can 
also be used to capture sparse vegetation cover. The 
formula is shown in Eq. (5).

NDVI = B8 - B4 / B8 + B4 (5)

To separate the tree cover from the low vegeta-
tion, the Sentinel-2-MSI bands B2, B3, B6 and B12 
are expected to hold the most valuable spectral infor-
mation (oTTosen et al. 2020).

Distinguishing open ground from built-up areas 
is one of the most challenging tasks in remote sens-
ing due to their high spectral similarity. This is espe-
cially true for the rural areas in Nyeri, where built-up 
structures are frequently small and scattered, making 
them highly inconspicuous and difficult to detect. In 
addition to the SAR and plain MSI-data, several op-
tical indices for mapping impervious surfaces that 
are discussed in comparative studies (chen et al. 
2020, eTTehadi osGouei et al. 2019, li et al. 2021)) 
were considered. The performance of the respective 
indices can vary considerably depending on the re-
gion and the types of soil present (chen et al. 2020), 

which can also be affected by seasonal variation (li 
et al. 2021). Therefore, in addition to the widely used 
Normalized Difference Built-Up Index (NDBI), the 
most promising novel indices have been selected re-
garding their performance in the respective study 
and calculated for the research area. These are the 
Normalized Difference Tillage Index (NDTI) 
(eTTehadi osGouei et al. 2019) and the Enhanced 
Normalized Difference Impervious Surfaces Index 
(ENDISI) (chen et al. 2019). The formulas for the 
NDBI and NDTI are given in Eq. (6) and (7).

NDBI = B11 - B8 / B11 + B8 
(6)

NDTI = B11 - B12 
/ B11 + B12 

(7)

The ENDISI uses a more complex formula given in 
Eq. (8)

B –2 α * B12

B11
+ ( )MNDWI

2

B +2 α* B12

B11
+ ( )MNDWI

2
ENDISI =

  (8)

with a correction factor α using the scene mean val-
ues (Eq. (9))

α =
B2 * 2 mean

B12

B11
+ ( )MNDWI

2

mean mean

 (9)

and the previously described MNDWI (Eq. (3)).

3.4	 Evaluation	 of 	 classification	 feature	 candi-
dates

To investigate the performance of the poten-
tial classification features, we evaluated our refer-
ence data from four datasets comprising a total of 
2,800 samples regarding the spread of the mean im-
age object values on a z-score standardized value 
range. Particular attention is paid to the different 
options for detecting water, the separability of the 
tree cover from the low vegetation and of built-up 
areas to bare land because these surface types are 
particularly relevant or expected to be particularly 
difficult to separate.

When comparing these options, we made the 
following observations in our reference data:

For water masking (also see Fig. 3), the SWI-
Index outperforms other optical indices because 
water has the smallest overlaps, especially with the 
built-up class when the outliers are taken into ac-
count. The SAR backscatter was also found to be 
relatively low. However, this is also true for other 
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surfaces such as bare land, which might also rep-
resent dry or low level water holes. However, since 
extremely low backscatter values certainly indicate 
water, this can be used as a supplementary criterion. 
According to our observations, this is occasionally 
helpful in shaded areas which in a few cases are 
falsely identified as water. A combination of SWI 
and SAR-backscatter therefore represents a prom-
ising solution with only a few overlapping objects 
remaining in the feature space.

For tree cover detection (see also Fig. 4), the 
sample data show that the tree covered areas tend 
to be less responsive in the relevant spectral rang-
es compared with lower vegetation. If the spectral 
values are compared with the canopy height values 

in the samples from the vegetation and tree cover 
classes, the presence of a relatively strong correlation 
(R2 = 0.72) can also be confirmed. Therefore, GFCH 
data is likely to be suitable as a complementary or 
additional data source when the colours falsely indi-
cate the presence of tree cover. This is conceivable, 
for example, in the case of certain agricultural plants 
or terrain-related shading effects. SAR-backscatter 
patterns are comparatively ambiguous in these 
cases. However, dB values of less than approxi-
mately - 13 dB only occur with low vegetation and 
therefore represent a potential exclusion criterion for 
non-tree-covered areas.

In terms of detection of built-up areas (also see 
Fig. 5), the NDBI shows no significant separability, 
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Fig. 3: Boxplots for water indices and SAR-backscatter according to class 
(bl: bare land; bu: built-up; tc: tree cover; vg: low vegetation; wt: water)
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while the SAR backscatter tends to be higher on built-
up structures. However, it is also subject to strong 
noise and outliers. High extrema indicate the presence 
of buildings. A visual interpretation of the data shows 
that many of the smaller buildings cannot be seen in 
SAR. The ENDISI and NDTI indices show potential 
for extraction given that the interquartile ranges for 
the built-up area and bare soil classes do not overlap. 
According to our sample data, the ENDISI is prefer-
able due to fewer outliers and a larger distance for 
the class medians and the interquartile ranges on the 
standardised scale.

3.5	 Classification	strategy

To meet the requirements of the local conditions in 
Nyeri and Muringato, we developed a sequential clas-
sification scheme using Trimble eCognition software. 
In this study, primary image segmentation was per-
formed using the popular multi-resolution segmenta-
tion, which merges single pixels into objects based on 
a local homogeneity criteria (baaTz & schäpe 2000). 
These contain a parent scale parameter and a weight 
of shape against colour as well as a weight of com-
pactness against smoothness. Authors suggest dif-
ferent settings for Sentinel-2-data based on the indi-
vidual task including for mapping wetlands (Kaplan 
& avdan 2018) or for mapping large-scale cropland 
(belGiu & csilliK 2018). We found that none of the 
setups in the literature met the requirements of our 
study area because the more general target classes can 
occur at multiple scales including small- and large-
scale farming, rural single housing, and larger settle-
ments or small trees in stands in rural areas and larger 
forests in national parks and forest reserves.

Therefore, we propose a sequential application 
at multiple scales while checking whether an object 
is homogenous regarding important classification 
features or needs further refinement. To do so, we 
chose to evaluate the interquartile ranges of the rel-
evant features along with the difference in quartiles 
for the respective mean values. With this method, 
segments that contain multiple classes can be iden-
tified while excluding extrema that are deliberately 
suppressed, such as shadows in forests, by using 
an object-based approach. Another aim of this 
multi-scale approach is to evaluate large areas such 
as large scale agriculture and forests stands which 
have higher measured values differentiated from 
small, but also relevant objects such as detached 
single buildings and small-scale agriculture, whose 
demarcation is limited by the geometric resolution 
of the data. Fig. 6 shows an example of this re-eval-
uation process using an object homogeneity criteri-
on. Our segmentation uses all Sentinel-2 bands with 
a resolution of 10 meters and starts with a scale of 
40, which we consider to be suitable for the larger 
homogeneous objects. Inhomogeneous objects are 
then further segmented with a scale of 10.

In this case, the rural areas with subsistence 
farming and smaller dwellings are grouped into 
objects, and are under-segmented, while the larger 
vegetation structures and agricultural areas were 
correctly segmented. By checking the homogeneity 
using the NDVI and ENDISI, it can be determined 
if there are likely to be different target classes like 
buildings, vegetation, or bare land composed with-
in a single segment. These inhomogeneous image 
objects can then be flagged accordingly and sub-
segmented at a finer scale.

At the finest scale we suggest an additional 
local contrast analysis because it is expected that 
even relatively low values can indicate an object 
if it shows a certain contrast and gradient with its 
surroundings. In Muringato, this concerns the de-
tection of small individual buildings whose size is 
often on the borderline for geometric resolution. 
Although the ENDISI values for image objects are 
high in relation to their size, the absolute values 
are frequently still lower than, for example, larger 
dry arable areas but still predominantly represent 
a local extreme. Therefore, the local contrast from 
ENDISI is also used as a classification feature with 
an example being shown in Fig. 7.

The image stack is then classified using a se-
quence of masks with the classification features 
shown in Fig. 8. The classification nomenclature 
allows for an intermediate classification into the 

bl

bu

-3 -2 -1 0 1 2 3 4

Standardized Values

NDBI

NDTI

ENDISI

(VV+VH)/2

Fig. 5: Boxplots for built-up-indices and SAR-backscatter 
according to class (bl: bare land; bu: built-up)
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generalized parent classes. By doing so, we expect 
to minimize omission and commission errors be-
tween subclasses that compose certain parent class-
es like vegetation and non-vegetation.

These masks can either be applied directly us-
ing the image objects mean values for homogene-
ous image objects or in conjunction with a multi-
threshold-segmentation, which further subseg-
ments objects identified as heterogeneous at the 
value edges.

Due to the smoothing and inconsistencies 
that arise when creating per-pixel-median images, 

we perform the masking in a supervised process. 
The thresholds in this study are chosen explora-
tory. This is because they are expected to differ 
depending on the season, the time range and the 
number of images processed into the underlying 
image mosaic.

For all the classification steps, there are fuzzy 
transition areas in which objects cannot be clearly 
assigned. For vegetation, we use ‘sparse vegetation’ 
and ‘shrubs’ as intermediate classes. The former 
marks the transition between vegetation and non-
vegetation, i.e., areas that have too high a NDVI to 

36°52' 36°54' 36°56'

Image Objects

non-homogenous

homogenous

S2-MSI

Red: B4

Green: B3

Blue: B2

-0
°2

2
'

Fig.	6:	Image	objects	flagged	as	inhomogeneous	at	a	scale	factor	of 	40
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be clearly classified as non-vegetation and too low a 
NDVI to be clearly classified as vegetation. The lat-
ter marks the transition between tree cover and low 
vegetation. Shrubs are assumed to lie between trees 
and low vegetation in terms of object height and 
colour values. To classify the remaining ambiguous 
image objects in all other steps where there is no 
meaningful semantic intermediate class, we chose 
to use a k-nearest Neighbours (kNN) machine 
learning classifier using the unambiguous objects 
as reference. kNN compares the unknown object 
against training data and assigns them to the class 
of the nearest trainings samples within the feature 
space (MaXwell et al. 2018). In this study, kNN is 
performed using Sentinel-2 B2, B3 and B4 bands in 
addition to the respective class properties.

4 Results and accuracy assessment

Based on the literature review and our findings 
from the classification feature evaluation, we per-
formed the LULC classification for the Muringato sub-
catchment using the feature combination for the class 
masks as summarised in Tab. 3. Due to the findings 
from our reference data, raw SAR-backscatter is used 
as an additional exclusion criterion for the tree cover, 
water, and built-up masks to identify false positives, 
while a combination of NDVI, ENDISI, and SWI indi-
ces or a vegetation-specific band combination (B2, B3, 
B6, B12) and GFCH data provide the most promising 
classification basis. Fig. 9 shows the classification re-
sults for the Muringato sub-catchment median com-
posite of the second half of 2021.

Tab.	3:	Suitable	classification	features	based	on	the	literature	review	and	analysis	of 	2,800	samples

Mask Features

Water / Non-water SWI, (VV+VH)/2

Tree cover / Shrub / Low vegetation GFCH, Vegetation Brightness (B2, B3, B6, B12), 
(VV+VH)/2

(vital) Vegetation / Sparse vegetation / Non vegetation NDVI

Built-up ENDISI, ENDISI-contrast, (VV+VH)/2

Fig. 8: Masks applied by thresholding the given features
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Accuracy Assessment was performed using a to-
tal of 556 independent validation points. A statistical 
comparison between the predicted classes and the 
reference classes is given in Tab. 4.

The overall accuracy is estimated to be ap-
proximately 88% with a kappa coefficient of 0.85. 
Confusion generally occurs primarily between the 
different vegetation classes and the spectrally similar 
non- or sparsely vegetated classes, which dominated 
the eastern part of Muringato sub-catchment under 

the particularly dry conditions during the study pe-
riod. This is also visible in the corresponding optical 
imagery. 

Given that the aim of this study was also to gener-
ate alternatives to global products for the study area, 
it is also useful to make a brief comparison. A visual 
comparison with the relatively novel ESA WorldCover 
10 m product for 2020 (zanaGa et al. 2021) also shows 
a considerably higher level of detail recognition com-
pared to the global products available (see Fig. 10).
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Fig.	9:	Classification	results	for	the	Muringato	sub-catchment	2021	(second	half 	of 	the	year)

Tab. 4: Confusion matrix

Tree 
cover

Shrubland Low 
vegetation

Sparse 
vegetation

Bare 
land

Built 
-up

Water Total Users Kappa

Tree cover 90 13 0 0 0 0 0 103 0.874

Shrubland 1 115 3 0 0 0 0 119 0.966

Low vegetation 0 14 95 2 0 0 0 111 0.856

Sparse vegetation 2 10 1 66 3 5 0 87 0.759

Bare land 0 0 0 7 67 5 0 79 0.848

Built-up 0 0 0 0 1 39 0 40 0.975

Water 0 0 0 0 0 0 17 17 1

Total 93 152 99 75 71 49 17 556 0

Producers 0.968 0.756 0.9595 0.88 0.944 0.796 1 0 0.879

Kappa 0.855
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Even though a complete statistical assessment 
is of limited significance due to the different class 
nomenclature, only 16 out of 45 buildings in our 
validation data are present in the ESA WorldCover 
dataset. In addition, 468 validation points are clas-
sified as being tree covered, shrubland, or grassland 
in the global dataset while only 341 are classified 
as tree cover, shrubland or lower vegetation in our 
classification. This indicates a considerable over-
estimation of vegetation cover compared with our 
LULC. 51 of our validation points are located on 
cropland in the global dataset. These could repre-
sent both vegetation and non-vegetation depending 
on the state of growth and have been excluded for 
the purposes of this comparison.

5 Discussion and conclusion

Tropical highlands remain a challenging tar-
get for LULC due to their high heterogeneity of 
the landscape and frequent cloud cover, causing a 
shortage of high quality and reliable comprehensive 
data. With this paper, we investigated the usability 
of GEE-processed Sentinel-1-SAR, Sentinel-2-MSI 
and GFCH data by analysing the classification fea-
tures derived from these datasets and performed an 
adapted multi-scale classification scheme for com-
plex tropical highland regions.

Analysing 2,800 sample data objects from 
four semi-annual datasets after undertaking the 
literature review, we found the SWI- and ENDISI-
indices to be highly promising features for water 
and building extraction. Meanwhile, a relatively dif-
ferentiated determination of vegetation types can 
be achieved by combining the optical data selected 

(B2, B3, B6 and B12 bands of Sentinel-2-MSI) with 
the CFCH information. The robustness of the op-
tical features is important given the high number 
of images usually required to compose a cloud free 
mosaic in tropical highlands and to introduce a 
certain degree of smoothing due to temporal varia-
tion. The fact that some of these feature combina-
tions cover wavelength ranges that other compara-
ble freely available satellites lack already indicates 
a particular utility for Sentinel-2 in the region. 
Moreover, its relatively high resolution allows ena-
bles meaningful analysis of the diverse rural area 
in the highlands, as demonstrated through the use 
of local contrasts in classifying built-up structures.

The SAR data was only used in a complementa-
ry role in this study because we could not see a clear 
demarcation of our target classes in the reference 
data with the values strongly scattering. Many ob-
jects of interest are not visible or are barely visually 
recognisable in the data and could not be constantly 
recorded. This is especially true for smaller objects 
including stand-alone buildings but was also the 
case for many vegetation areas which can be clearly 
recognised in the corresponding optical features 
but not in the SAR data (see Fig. 11).

Other authors have achieved high levels of ac-
curacy for certain tasks using SAR in other regions. 
However, a priori information is frequently used for 
masking irrelevant areas beforehand (dosTálová 
et al. 2016, Khabbazan et al. 2019, yGorra et al. 
2021). These datasets are not always available, es-
pecially in developing countries. In this study, 
Sentinel-1-SAR-implementation was performed us-
ing GRD data from GEE with the aim of deriving 
direct classification features to be used within our 
object-based classification approach. Other authors 

Fig.	10:	Comparison	of 	the	classification	results	(left),	optical	data	(middle)	and	the	ESA	WorldCover	product	(right)
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suggest using the coherence of multiple observa-
tions from Sentinel-1-SLC (Single Look Complex) 
in a time series (borlaf-Mena et al. 2021, Jacob 
et al. 2020, niKaein et al. 2021) but SLC-data is 
not available in GEE. In this case, its cloud com-
puting functions would have to be dispensed with. 
Sentinel-1-SAR-backscatter could also be used for 
sequential change detection (canTy et al. 2020) in-
stead of the classification features. This could be 
used to visualise changes independent of the ex-
plicit land use type, which may be helpful given that 
some classes such as buildings can be more persis-
tent than others.

Because it provides the highest resolution 
among the freely available datasets, Copernicus 
data was deliberately used for this work. Other SAR 
data using bands at different wavelengths, such as 
TerraSAR-X using X-band, or polarizations sources 
may be considered. The use of quad-polarized sen-
sors would allow for the calculation of a full quad-
polarized Radar Vegetation Index (RVI) (dinesh 
KuMar et al. 2013, KiM et al. 2014) in compari-
son with Sentinel-1 dual-polarization. KiM et al. 
(2012) found L-band derived RVI to be well cor-
related with several optical vegetation indices us-
ing a ground-based radar system. An L-band based 
SAR satellite mission ‘Tandem L’ with high tempo-
ral and spatial resolution is planned by the German 
Aerospace Centre (KrieGer et al. 2009).

The GEDI data used in this study are solely from 
the Global Canopy Height Model 2019 (poTapov 
et al. 2021), and also subject to all the inaccuracies 
related to its genesis, such as artefacts and cloud 
gaps caused by the optical component (verhelsT 
et al. 2021) and will also involve some temporal 
deviations. The spatial resolution is not entirely 
optimal, given that they are less accurate than the 
Sentinel-2 data that is used to build image objects 
in this study. This gap in resolution could be closed 
with future products with a higher resolution from 

fusion with other sensors (Qi et al. 2019, Kacic et 
al. 2021). A future direct integration of Sentinel 2 
data is also planned for the Global Canopy Height 
product, which is also expected to improve themat-
ic accuracy (Glad 2022). However, being the only 
ready-to-use product at the time of this study, the 
GFCH product was considered the most practical 
and reproducible option for method development 
until other full or improved products are released.

In our sample data, the canopy height values 
show a relatively high correlation to the colour val-
ues that also separate the tree cover and low vegeta-
tion. We noticed a helpful effect when certain agri-
cultural crops such as coffee, which appear darker 
than other vegetation areas and would otherwise be 
classified as ‘tree-covered’, are correctly classified 
by the GCHM integration. However, given that we 
did not subdivide specific forms of lower vegeta-
tion besides sparse vegetation via NDVI, we cannot 
quantify this observation.

Some aspects could also be altered in terms of 
the methods used. Smoothing data from calculat-
ing a median composite is a potential source of un-
certainties. Another option that could be consid-
ered is to classify the images individually and then 
merge the results. We also did not include a change 
detection or time series across multiple semi-annu-
al products. This could contribute substantially to 
the accuracy given that the scene we evaluated as 
an example is in a period with low levels of vegeta-
tion, which is particularly susceptible to confusion 
between sparse vegetation and non-vegetation. By 
adding a temporal component by comparing indi-
vidual classification results, additional classification 
depth including agriculture could also be incorpo-
rated and might also improve the accuracies as in-
dicated by (schulz et al. 2021). This could not be 
included in this study due to the lack of multi-year 
validation data and is planned as a further step in 
the operational implementation of the concept.
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The customized multi-scale classification strat-
egy we propose is designed to meet the special prop-
erties of heterogeneous tropical highland landscapes 
and achieved an 87.9% accuracy in the Muringato 
sub-catchment. This is comparable to other stud-
ies in East Africa, which use different data, such as 
Landsat time series and a range of ancillary datasets 
(87.7%) (Mariye et al. 2022), or combined Landsat 
and RapidEye data (four maps ranging from 85.7% to 
93.2%) (Kindu et al. 2013). However, some of these 
data are lower resolution or less accessible. schulz et 
al. (2021) used comparable seasonal Sentinel-1 and 2 
data stacks in a heterogeneous environment in Niger 
for machine learning approaches, achieving up to 
73.3%. This allows for a higher degree of automation 
but suggests that this comes at the expense of accu-
racy. Also, although this is not statistical evidence, 
a visual comparison and cross-checking with our 
validation data suggests a noticeable improvement 
over current available global products. This mani-
fests itself primarily in the large-scale and heteroge-
neous areas that are not represented with sufficient 
differentiation in global products for catchment-level 
tasks. Here, an object-based approach in combina-
tion with a homogeneity assessment of the areas 
under consideration and a local contrast analysis for 
particularly critical classes is likely to be particu-
larly helpful. Therefore, we conclude that multi sen-
sor earth observation data is suitable for improving 
LULC in an object-based approach despite the dif-
ficult conditions in these regions. Due to the trans-
ferable class design, we think that this classification 
strategy could be applicable with minor adjustments 
for similar regions. However, this remains to be eval-
uated given that resources for the validation data in 
this study were limited to Muringato.

Findings from this paper will be incorporated 
into a regional environmental monitoring strat-
egy, including a Water and Energy Budget-based 
Distributed Hydrological Model (WEB-DHM) 
(wanG et al. 2009a, wanG et al. 2009b) that uses 
LULC information as an input.
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