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Summary: It is still an open question, which processes lead to the spatiotemporal specifications of  observed near-surface 
temperature changes over recent decades. Here, we contribute to this debate by investigating a large number of  theory-
based atmospheric fields referring to the radiation and energy budget and to atmospheric dynamics that may serve as 
predictors for local temperature changes. The predictors are linked to temperature trends from reanalysis and climate 
model data, using a sophisticated spatial and temporal statistical model. Temperature changes since the mid-20th cen-
tury exhibit distinct regional and seasonal differences. After 1990, the near-surface warming rate is more enhanced over 
landmasses rather than oceans and roughly increases with latitude in both hemispheres. While none of  the considered 
predictors solitarily accounts for the spatial heterogeneity of  recent temperature trends, their linear combination largely 
reproduces the observed cooling pattern during the mid-20th century and the enhanced warming pattern after 1990. This 
excludes high-altitude areas, sea ice margins and upwelling regions where local feedbacks and nonlinear processes prevail. 
The leading predictors pertain to radiative processes, especially downward longwave radiation, and changes in sensible 
heat fluxes. In the low latitudes, dynamical processes such as temperature advection and energy flux divergence also play 
a role. Until the end of  the 21st century, the warming rate and its ocean-land contrast steadily increase. The underlying 
mechanisms are the same as the ones already established in present-day climate, but near-surface temperature follows 
more straightly the imposed greenhouse gas scenario. Climate models have different skills in reproducing the observed 
trend pattern but exhibit more or less the same mechanisms of  temperature control.

Zusammenfassung: Es ist nach wie vor nicht abschließend geklärt, welche Prozesse zu den spezifischen raumzeitlichen 
Ausprägungen des bodennahen Erwärmungsmusters über die letzten Jahrzehnte beigetragen haben. Im vorliegenden 
Beitrag werden anhand diverser Atmosphärenfelder mögliche Prädiktoren untersucht, die aus der Theorie der Tempe-
raturänderung abgeleitet werden und mit der atmosphärischen Zirkulation sowie dem Strahlungs- und Energiehaushalt 
in Verbindung stehen. Diese Prädiktoren werden über ein räumliches bzw. zeitliches Modell mit den Temperaturtrends 
von Reanalyse- und Klimamodelldaten in Beziehung gesetzt. Die Temperaturänderungen seit der Mitte des 20. Jahrhun-
derts sind durch deutliche regionale und saisonale Unterschiede gekennzeichnet. Die bodennahen Erwärmungsraten seit 
1990 sind über den Landmassen stärker ausgeprägt als über den Ozeanen, ferner nehmen sie auf  beiden Hemisphären 
polwärts zu. Keiner der untersuchten Prädiktoren kann die räumliche Heterogenität der rezenten Temperaturtrends 
für sich stehend erklären. Stattdessen lassen sich das Abkühlungsmuster in der Mitte des 20. Jahrhunderts und das Er-
wärmungsmuster nach 1990 durch eine Linearkombination mehrerer Prädiktoren reproduzieren. Davon ausgenommen 
sind Hochgebirgsregionen, Meereisränder und ozeanische Auftriebsgebiete, wo lokale Rückkopplungen und nichtlineare 
Prozesse dominieren. Die wichtigsten Prädiktoren betreffen den Strahlungshaushalt, insbesondere die atmosphärische 
Gegenstrahlung, und sensible Wärmeflüsse. In den niederen Breiten spielen auch dynamische Prozesse wie Temperatur-
advektion und Energieflussdivergenzen eine größere Rolle. Bis zum Ende des 21. Jahrhunderts nehmen die Erwärmungs-
raten und ihr Land-Meer-Kontrast stetig zu. Die zugrundeliegenden Mechanismen sind in Vergangenheit und Zukunft 
die gleichen, wobei die Temperatur in Zukunft unmittelbarer als bislang dem Szenario steigender Treibhausgaskonzen-
trationen folgt. Klimamodelle reproduzieren die beobachteten Erwärmungsmuster mit unterschiedlicher Güte, obwohl 
die gleichen Mechanismen der Temperatursteuerung aktiv sind.
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1 Introduction

Global warming represents a major indicator of 
man-made climate change and a primary mechanistic 
explanation for the human interference with climate 
(IPCC 2007, 2013). Therefore, a detailed physical un-
derstanding of the causes of observed temperature 
trends is crucial for creating public confidence in 
the scientific line of argument from greenhouse gas 
emissions over radiative forcing to anthropogenic 
climate change. Yet, the spatiotemporal heterogene-
ity of temperature changes over recent decades does 
not suggest a simple link to monotonously and uni-
formly rising greenhouse gas concentration (Stott 
et al. 2000; IPCC 2007, 2013). This raises the ques-
tion of how increasing greenhouse gas and aerosol 
concentrations affect near-surface temperature via 
feedbacks in the radiation budget, cloudiness, sur-
face processes and atmospheric dynamics. 

In terms of the temporal component, much at-
tention has been paid to the time series of near-sur-
face global-mean temperature. Stott et al. (2000) 
have been among the first to detect the main drivers 
of low-frequency variability in the observed glob-
al-mean temperature time series by a series of cli-
mate model simulations with various combinations 
of natural and anthropogenic forcings. They con-
cluded that a realistic combination of natural and 
anthropogenic drivers is necessary to reconstruct 
the observed time series, with enhanced greenhouse 
forcing clearly dominating since the 1980s. Such 
20th-century climate hindcasts have also become a 
standard approach in the latest IPCC reports dedi-
cated to attribute observed climate characteristics, 
mainly regional-mean temperature time series, to 
either natural or man-made components of climate 
variability (IPCC 2007, 2013). There is a broad con-
sensus that the early warming period of the 20th cen-
tury emanates from a combination of natural and 
anthropogenic drivers, that the slight cooling during 
the 1940-1970 period is mainly caused by increasing 
aerosol emissions from human sources, especially 
over Northern Hemisphere landmasses, and that the 
substantial temperature rise since the 1980s is pre-
dominated by enhanced greenhouse warming (e.g. 
PaetH and FeicHter 2006; IPCC 2007; knutSon et 
al. 2013; IPCC 2013, PaetH 2015), with a presumed 
hiatus after the turn of the millennium due to in-
ternal variations in the coupled ocean-atmosphere 
system (coHen et al. 2012). 

Concerning spatial heterogeneity, the pattern 
of temperature changes is more difficult to study 
because some areas of the globe are barely covered 

by meteorological observations (cf. HarriS et al. 
2020). Based on a combination of data from differ-
ent sources, the 5th Assessment Report of the IPCC 
draws a rather comprehensive picture of observed 
changes in near-surface temperature (IPCC 2013). 
Supplemented by climate model experiments, it can 
be concluded that the temperature trends since 1901 
feature two systematic spatial structures: an equator-
to-pole gradient and an ocean-to-land contrast ( Jain 
et al. 1999). This is particularly expressed in the 
Northern Hemisphere. 

Wallace et al. (1995) have been the first to sug-
gest that the landmasses (oceans) are relatively warm 
(cold) when the Northern Hemisphere experiences a 
positive temperature anomaly. They named this pat-
tern cold ocean - warm land (COWL) and explained 
the contrast by the different heat capacity of land and 
ocean surfaces, favouring a larger temperature re-
sponse to advection processes over land. Since then, 
several authors have shown that, besides near-sur-
face temperature, the COWL pattern leaves a mark 
in various lower-tropospheric climate features and, 
hence, represents a leading pattern of climate vari-
ability (Wu and StrauS 2004; SHi and BueH 2012). 
Broccoli et al. (1998) also saw the different thermal 
inertia of ocean and land surfaces as the major cause 
for stronger warming trends over the continents. 
Other explanations pertain to changes in extratropi-
cal circulation modes and the related advection of 
anomalously warm and cold air masses, respectively 
(Quadrelli and Wallace 2004; rautHe and PaetH 
2004; PaetH and Pollinger 2010). More recently, 
Boer (2011) stated that the argument of different 
thermal inertia may be too simple to account for the 
substantial spatial heterogeneity of observed temper-
ature trends. Instead, he referred to the importance 
of local feedbacks in the context of radiative forc-
ing, surface processes, cloudiness and atmospheric 
circulation. A crucial mechanism for the maximum 
warming rates over high-latitude and high-altitude 
regions is given by the ice-albedo feedback as a result 
of reduced snow and sea-ice cover and melting gla-
ciers (IPCC 2007, 2013). 

Although Wallace et al. (1995) originally in-
terpreted the COWL pattern as being an expres-
sion of internal climate dynamics, the spatial pat-
tern of observed and simulated warming trends is 
often referred to as a fingerprint of anthropogenic 
climate change and used for detection and attribu-
tion studies (e.g. Broccoli et al. 1998; Jain et al. 
1999; PaetH and HenSe 2001; van oldenBorgH et 
al. 2013; PaetH et al. 2017). In addition, the dif-
ferential warming of the Earth is supposed to af-
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fect climate phenomena that arise from spatial tem-
perature gradients such as jet streams, atmospheric 
waves and monsoons (Sutton et al. 2007; Jain et al. 
1999, PaetH and Pollinger 2019). 

While the pattern of past and future tempera-
ture changes plays a crucial role for ongoing clima-
tological research, but also for regional climate im-
pacts and necessary adaptations, its spatiotemporal 
heterogeneity still lacks a comprehensive explana-
tion (Sutton et al. 2007). In the current study, we 
pursue three major objectives: (1) we aim at decod-
ing the trend patterns of near-surface temperature 
from observational, reanalysis and climate model 
data in the light of mechanisms involved in the pro-
cess chains between radiation budget, surface en-
ergy fluxes, atmospheric dynamics, land surface and 
cloud feedbacks. These mechanisms are represented 
by meteorological fields that are selected accord-
ing to thermodynamic theory (see section 2) and 
assessed by means of a statistical model approach 
that allows for identifying the relative importance 
of these mechanisms in different regions. (2) We 
compare the prevailing mechanisms in the past and 
future in order to gain insight into the temporal sig-
nature of the processes that are related to the warm-
ing of our planet. (3) We evaluate climate models 
in terms of their ability to reproduce the observed 
temperature trend patterns and the underlying pro-
cesses as derived from reanalyses. 

The research approach is guided by two scien-
tific hypotheses: (1) the spatiotemporal heterogene-
ity of observed and simulated temperature changes 
cannot be satisfactorily accounted for by a single 
process but by a linear combination of a limited 

number of well-founded processes. (2) The under-
lying processes of global warming differ between 
past and future periods. 

In the next section, we delineate the theoreti-
cal background of temperature changes, the result-
ing statistical methodology and the analysed model 
and observational data sets. Section 3 is dedicated 
to the results. The findings of the present study are 
discussed in section 4 against the background of pre-
viously published work. The main conclusions are 
drawn in section 5.

2 Methods and data

2.1 Considered data sets

The main part of this study refers to the NCEP/
NCAR reanalysis (hereafter NCEP) that is globally 
available in 2.5° resolution and extends from 1948 un-
til 2019 (kalnay et al. 1995). The analysis is based 
on the output variables 2 m temperature, 10 m zonal 
and meridional wind velocity, surface sensible and 
latent heat flux, surface downward short-wave and 
long-wave radiation, surface upward short-wave and 
long-wave radiation (Tab. 1). Reanalyses provide com-
plete and multivariate meteorological data sets with 
a high level of inherent physical consistency, nudged 
to available observational data. Yet, we are aware that 
reanalyses are not observations in a stricter sense, 
but the required meteorological fields are not glob-
ally available from station data or gridded data sets. 
For this reason, the temperature trend patterns from 
the NCEP reanalysis are compared with the Climatic 

Tab. 1: Considered data sets and atmospheric fields (T = temperature at 2 m height, u = zonal wind at 10 m height, v = me-
ridional wind at 10 m height, for additional variable symbols see Tab. 3).

Data set
Horizontal 
resolution

Time 
period

Emission
scenario

Atmospheric 
fields

NCEP reanalysis 2,5° 1948-2019 - T, u, v, H, E, I, A, G, E

CRU gridded 
observations

0,5° (only land masses) 1901-2019 - T

MPI-ESM-LR 

global GCM
~2,0° 1850-2100 RCP8.5 T, u, v, H, E, I, A, G, E

GCM from 
CMIP5

~1,8° 1850-2100 RCP8.5 T, u, v, H, E, I, A, G, E

GCM from 
CMIP3

~2,8° 1860-2100 SRES A1b T, u, v, H, E, I, A, G, E
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Research Unit (CRU) temperature data over all land-
masses except for Antarctica (HarriS et al. 2020). The 
CRU data set represents a gridded temperature data set 
in 0.5° resolution that is based on a large number of 
meteorological station observations (Tab. 1). Despite 
the lower horizontal resolution compared with the 
most recent ERA5 reanalysis, the NCEP reanalysis has 
been chosen because it provides continuous data since 
1948, capturing the major cooling and warming phas-
es of the post-war period. Trend periods in the early 
20th century would also be interesting to study in this 
context, e.g. from 20th-century reanalyses. However, 
temperature data during the first half of the last cen-
tury are characterized by substantially lower quality 
(Brönnimann 2009) and, hence, may imply spurious 
effects in the temperature trends.

The second part of our study includes the same 
meteorological fields from coupled climate models 
(Tab. 1). As climate change detection in a multi-mod-
el ensemble framework is not a primary goal of this 
analysis, we rely on a small number of selected climate 
model simulations that are presumably characterized 
by a different ability to reproduce observed tempera-
ture trend patterns. This selection goes back to the 
work from ring et al. (2019) who have ranked climate 
models from Coupled Model Intercomparison Project 
(CMIP) version 3 and 5 with respect to exactly this 
feature. 

The main focus is on the German MPI-ESM-LR 
Earth system model from the Max-Planck Institute 
for Meteorology (giorgetta et al. 2013). This global 
model has a T63 spectral resolution (~2°) that has 
been interpolated to the 2.5° grid of the NCEP rea-
nalysis. The simulation covers the period 1850-2100, 
using observed natural (Earth orbit, solar variability, 
natural and volcanic aerosols) and anthropogenic 
(well-mixed greenhouse gases, sulphate aerosols, land 
use changes) forcings until 2005. After 2005, the 
RCP8.5 emission scenario (van vuuren et al. 2011) 
is prescribed, combined with projections of all natu-
ral forcings except for volcanic aerosols (giorgetta 
et al. 2013). As this state-of-the-art model accounts 
for most known forcings and also includes dynamic 
vegetation cover, it may exhibit similar low-frequen-
cy climate variations as observations and reanaly-
ses. The MPI-ESM-LR model is part of the CMIP5 
multi-model ensemble of climate change projections 
(taylor et al. 2012) and widely used in the climato-
logical community (cf. IPCC 2013). 

For model inter-comparison, two additional cou-
pled climate models are considered, one from the 
CMIP3 framework (IPCC 2007) and one from CMIP5 
(IPCC 2013). According to ring et al. (2019), they 

are assumed to have a lower skill to reproduce the 
observed temperature trend patterns. In contrast to 
MPI-ESM-LR, the CMIP5 model provides SO4 aero-
sols on a constant yearly cycle, but no other aerosols. 
The CMIP3 model uses the 20C3m scenario until 
2000 and the SRES A1b scenario from there on. Land 
use changes and volcanic forcings are not included 
and solar forcing exclusively for 20C3m. Only SO4 
aerosols are prescribed. They serve as a negative ex-
ample and remain incognito. The interesting question 
is whether the investigated climate models also differ 
in terms of the mechanisms leading to temperature 
changes or just have different sensitivities to the im-
posed forcings.

2.2 Theoretical background and predictor selection

A key element of our approach is the selection of 
adequate meteorological fields that serve as predictor 
variables for the spatial and temporal characteristics 
of near-surface temperature changes, representing 
the predictand in the statistical model. The predictor 
selection must satisfy two constraints: first, the link 
between predictors and temperature changes must be 
physically based in accordance with thermodynamic 
theory and, second, the number of predictors must 
be all-embracing with respect to the required infor-
mation, but at the same time small in order to avoid 
overfitting.

The total time derivative of temperature T ema-
nates from the first law of thermodynamics, exclud-
ing chemical reactions (Wallace and HoBBS 2006). 
When applying this to near-surface temperature T0 in 
our case the temperature at 2 m above ground, verti-
cal wind velocity vanishes. Thus, for a local change in 
time, e.g. in a model grid box, temperature variations 
are caused by horizontal advection, local changes in 
diabatic heating and the divergence of energy fluxes 
in the diabatic term 

with horizontal wind vector wH and heat capac-
ity cp. The diabatic term refers to warming and cool-
ing effects arising from radiative processes, sensible 
heat fluxes and phase transitions of water with the 
mass-specific energy fluxes for radiation q, sensible 
heat h and latent heat l (with unit  J). The negative 
signs occur because energy fluxes are typically de-
fined from the surface into the atmosphere, with a 
positive sign marking a loss of energy at the surface. 
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Concerning the third term on the right hand 
side, it must be distinguished between energy flux-
es that simply pass through the considered atmos-
pheric layer without heat release, and energy fluxes 
that transfer a part of their energy to the intrinsic 
energy of the atmospheric layer and, hence, lead 
to temperature rise – or decrease when the incom-
ing heat flux is smaller than the outgoing (Hantel 
and HaimBerger 2016). In the prognostic equation 
for temperature this is taken into account by con-
sidering the divergence of the energy fluxes. Note 
that the divergence of latent heat fluxes l within an 
atmospheric layer directly affects the atmospheric 
water vapour content but not temperature, as long 
as no phase transitions of water occur. As conden-
sation and evaporation barely prevail at 2 m height, 
we do not expect a strong impact of latent heat flux 
divergence on near-surface temperature. 

In high-resolution climate models with time 
steps of 1-2 minutes, local time changes in the sec-
ond term are very small and usually not taken into 
account (cf. Bott 2012). In the present study, we 
pursue a climatological approach on the basis of 
multi-decadal temperature variations and, hence, 
include long-term changes of surface energy fluxes 
H and L into the atmosphere and surface net radia-
tion Q (now with standard output unit Z). In order 
to improve our process understanding, Q is further 
differentiated into surface global radiation I, sur-
face albedo A, downward long-wave radiation at 
surface G (a.k.a. greenhouse effect) and outgoing 
surface long-wave radiation E.

In total, we use 11 potential predictor fields 
to explain the spatiotemporal characteristics of 
observed and simulated temperature changes: 
horizontal advection, 3 terms of energy flux di-
vergence, sensible and latent heat fluxes, and 5 
variables referring to the surface radiation balance. 
The predictor fields themselves arise from a large 
number of processes in the climate system and, 
hence, stand for the complexity of mechanisms 
leading to warming and cooling tendencies at the 
surface: the first four predictors involve changes 
in atmospheric circulation. Sensible and latent heat 
fluxes are affected by changes in surface net radia-
tion and skin temperature, vegetation cover, soil 
hydrology and atmospheric turbulence. The four 
components of surface net radiation reflect a wide 
variety of processes involved in climate variability 
and change: global radiation includes signals of so-
lar variability, volcanic eruptions and variations in 
cloudiness and aerosol absorption. Surface albedo 
relates to land cover changes and to the spatial ex-

tent of sea ice, snow and glaciers with feedbacks 
from temperature. Downward long-wave radiation 
is influenced by greenhouse gas concentrations, 
atmospheric water vapour content and cloudiness, 
while outgoing long-wave radiation is a direct non-
linear function of near-surface temperature. For 
the temporal statistical model, the time series of 
atmospheric greenhouse gas concentrations, ex-
pressed as CO2-equivalents, is used additionally 
as a global-mean predictor, based on observations 
until 2005 and the RCP8.5 emission scenario until 
2100 (van vuuren et al. 2011).

2.3 Statistical model

While temperature variations at the scale of 
temporal discretization in climate models and re-
analyses (i.e. minutes) emanate from the equation 
described in subsection 2.1, we are interested in 
the statistical relationships between the selected 
theory-based predictors and spatial and temporal 
specifications of temperature changes at the cli-
matological time scale (i.e. years and decades). The 
statistical transfer functions between the predic-
tor fields and temperature changes are determined 
by means of a stepwise linear multiple regression 
model with a bootstrapping approach for cross 
validation (WilkS 2006). The statistical model pro-
vides information on the explained variance and 
statistical significance of each predictor and of the 
entire model, the relative importance (ranking) of 
the predictors, and the number of robust predic-
tors as approved by cross validation. Especially 
this latter information is a strong argument for 
such a classical statistical model rather than using 
machine-learning approaches which represent effi-
cient optimization algorithms but do not provide 
detailed information on the role of each individual 
predictor (cf. Pollinger et al. 2017). A detailed de-
scription of the statistical model is given by PaetH 
(2011). The assumed linearity is certainly a major 
constraint that needs to be scrutinized in the light 
of the gained results. We are aware that correlation 
and regression analysis is not dedicated to detect 
physical mechanisms nor causality between the 
considered variables. While the physical process-
es can be assumed to be reasonably represented 
in the analyzed reanalysis and climate model data, 
our main goal is to generate process understanding 
at the climatological time scale by explaining the 
space and time structure of global warming in the 
light of meteorological fields that, from the per-
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spective of theory, are directly related to near-sur-
face warming. In this context, it is not obstructive 
that temperature is not only affected by the predic-
tor variables but also feeds back on most of them.

The statistical model is applied to spatial pat-
terns (spatial approach) and to time series at indi-
vidual grid boxes (temporal approach). Both ap-
proaches use various time windows and seasons in 
the past and future in order to assess the many-sid-
ed facets of observed and simulated temperature 
changes. The spatial approach is based on a large 
sample of 10,244 grid boxes. As the number of 
predictors is much smaller (= 11), 1,000 grid boxes 
can be retained for cross validation. The temporal 
approach uses time windows of 30 years or lon-
ger that are suitable to distinguish between noise 
and potential signals of natural or anthropogenic 
climate drivers (Santer et al. 2011; Paxian et al. 
2013). Here, we reserve only 5 years for cross val-
idation. The bootstrap selection of retained grid 
boxes and years, respectively, is randomized and 
repeated 50 times. It has been found that this is 
by far sufficient to obtain a stable solution. The 
results illustrated in section 3 represent either av-
erages or sums over the 50 iterations of the statis-
tical model.

When spatial means and correlations are com-
puted the grid boxes are weighted by their spatial 
extent using a trigonometric function. All predic-
tors are standardized to equilibrate differences in 
spatial and temporal variability. For the temporal 
approach of the statistical model, all time series 
are de-trended with the aim of avoiding spurious 
correlation due to long-term trends. The assess-
ment of statistical significance is based on stan-
dard t-test (correlation coefficients and trends) and 
F-test (multiple regression model) statistics (WilkS 
2006). For the spatial approach, the degrees of 
freedom are reduced due to the substantial spa-
tial autocorrelation of temperature and, to a lower 
extent, of the various predictor variables. The re-
duced degrees of freedom Φr are computed by

with Φ = n – 2 = 10,242 arising from the orig-
inal grid box resolution and q representing the 
global-mean autocorrelation of de-trended tem-
perature time series between neighboring grid 
boxes (WilkS 2006). The largest autocorrelation is 
found for annual-mean temperature ( q ), leading 
to Φr = 600. For a conservative test design, this 
applied to all considered variables and seasons.

3 Results

3.1 Spatiotemporal characteristics of  global 
warming from NCEP

The spatial pattern of temperature trends (speci-
fied as linear temperature change per decade) during 
the NCEP periods 1948-2019, 1948-1977 and 1990-
2019 are shown in Fig. 1. Concerning the long period 
(top panel), increasing temperatures clearly dominate 
over the globe. The strongest warming has occurred 
over the polar regions with more than 1°C per dec-
ade in the Barents Sea. There are also several spots 
with minor cooling tendency, especially over the 
mid-latitude oceans and over some land areas such as 
the Sahara, the Andes and parts of China. The trend 
patterns in boreal spring and autumn are very close 
to the one for annual-means, whereas Antarctica 
has experienced a clear cooling in austral summer 
since 1948 of up to 0.4°C per decade (not shown). 
The temperature trend patterns from the CRU data 
set are quite similar but less heterogeneous in space 
(not shown). The spatial correlation coefficient over 
the landmasses covered by NCEP and CRU amounts 
to 0.6 which is quite high given the large sample of 
more than 2,700 grid boxes. 

The mid-20th century (middle panel) was marked 
by a hemispherically asymmetric pattern with cool-
ing tendency over most parts of the Northern 
Hemisphere mid-latitudes, especially over North 
America, Europe and Asia. At the same time, most 
areas of the Southern Hemisphere underwent a no-
ticeable warming trend. Over and around Antarctica, 
the trend pattern is very noisy with positive and neg-
ative trends in close vicinity. During the last 30 years 
(bottom panel), a massive warming prevails, reveal-
ing two basic structures: an equator-to-pole gradi-
ent with maximum warming over the polar regions, 
and an ocean-to-land contrast (cf. Jain et al. 1999). 
Nonetheless, some regions still experienced decreas-
ing temperatures. This mainly holds for parts of the 
South American highlands, some desert regions and 
mid-latitude ocean basins. Temperatures from the 
CRU data set confirm the trend patterns from NCEP, 
but the cooling before 1977 is less pronounced in 
CRU (not shown).

In order to assess systematic differences in 
temperature trends between land and ocean areas, 
Tab. 2 lists the spatial-mean trends from NCEP for 
different trend periods and seasons. Over the whole 
period from 1948 to 2019, only positive trends have 
occurred. Most trends are statistically significant 
and larger over the continents rather than oceans. 
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Fig. 1: Annual-mean temperature trends per decade from the NCEP reanalysis during the 1948-2019 (top), 1948-1977 
(middle) and 1990-2019 (bottom) periods.
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Yet, the difference is small. Between 1948 and 1977, 
negative trends prevail but they are close to zero and 
not at all significant. The cooling has been a clearly 
continental phenomenon. Since 1990, our planet has 
warmed substantially and much more over the land-
masses than over the oceans, supporting the postu-
lation of the COWL pattern. The highest warming 
rate is found over the land areas in boreal autumn 
with 0.44°C per decade. Anyway, not all temperature 
trends since 1990 are statistically significant. 

3.2 Predictor fields from NCEP

The long-term climatological mean of all predic-
tor fields is depicted in Fig. 2, along with the climato-
logical pattern of near-surface temperature as the pre-
dictand in our statistical model approach. Most an-
nual-mean patterns are well-known and easily inter-
pretable: the temperature pattern (T2M) mirrors the 
equator-to-pole gradient of surface net radiation and 
topography over the landmasses. The strongest sen-
sible heat fluxes (H) into the atmosphere occur over 
dry land areas, negative fluxes from the atmosphere 

to the ground prevail in polar regions. Oceanic re-
gions, the inner tropics and parts of the mid-latitudes 
barely exhibit any sensible heat fluxes. Instead, avail-
able radiative energy is almost entirely transformed to 
latent heat fluxes (L) because ample sources of water 
vapor are given from open water surfaces or dense 
vegetation cover. Solar irradiation (I) peaks over the 
low latitudes with a relative minimum in the vicin-
ity of the intertropical convergence zone (ITCZ). The 
minimum occurs over the poleward mid-latitudes in 
both hemispheres with a slight increase towards the 
poles themselves due to the polar day phenomenon. 
Albedo (A) is largest over the regions covered by 
snow and ice, i.e. polar caps and high-mountain areas, 
and over deserts. Terrestrial emission (E) is a direct 
function of surface temperature and, hence, largest 
in the low latitudes and close to zero over Antarctica. 
A very similar pattern is given for the greenhouse ef-
fect (G), i.e. the downward long-wave radiation that 
depends on atmospheric greenhouse gas concentra-
tions, water vapor content and cloudiness. The sur-
face net radiation (Q) results from the interaction of 
the components of the surface radiation balance and 
is positive (negative) over the low (high) latitudes. 

Tab. 2: Temperature trends from the NCEP reanalysis in different periods and seasons averaged over the globe, the land area 
and the ocean area (unit is °C/decade). Bold numbers indicate linear trends significant at the 5% level.

Period Season Globe Land area Ocean area

1948-2019

ANNUAL 0.11 0.12 0.11

DJF 0.08 0.05 0.10

MAM 0.12 0.15 0.11

JJA 0.13 0.16 0.11

SON 0.13 0.12 0.13

1948-1977

ANNUAL -0.04 -0.18 0.01

DJF -0.05 -0.27 0.03

MAM -0.04 -0.11 -0.01

JJA -0.04 -0.13 0.00

SON -0.04 -0.21 0.03

1990-2019

ANNUAL 0.23 0.32 0.19

DJF 0.19 0.19 0.19

MAM 0.22 0.30 0.18

JJA 0.20 0.30 0.16

SON 0.29 0.44 0.23



233H. Paeth and F. Pollinger: Revisiting the spatiotemporal characteristics of  past and future global warming2020

-58 0 30

T2M [°C]

-80 0 120

H [W/m²] 

-10 0 210

L [W/m²]

-0.001 0.000 0.001

-div(Q flux) [W/(m²s)]

-0.001 0.000 0.001

-div(H flux) [W/(m²s)]

-0.001 0.000 0.001

-div(L flux) [W/(m²s)]

100 320

I [W/m²]

50 430

G [W/m²] 

-70 0 190

Q [W/m²]

20 140

A [W/m²]

130 480

E [W/m²] 

-5e-05 0 5e-05

-adv(T) [K/s]

Fig. 2: Annual-mean patterns of  temperature and related climate variables from the NCEP reanalysis averaged over the 1948-
2019 period, for variable names see Tab. 3.
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The remaining four predictor fields are tied to 
near-surface atmospheric circulation. As zonal and 
meridional wind velocity are equally included in the 
calculation of the divergence terms of sensible heat 
flux (-div(H flux)), latent heat flux (-div(L flux)) and 
radiation flux (-div(Q flux)), these patterns look quite 
similar, but exhibit different amplitudes. The nega-
tive sign implies that a positive value in the maps in-
dicates a net warming effect in the given region. Heat 
sources emerge in the ITCZ region, along the north-
ern and southern equatorial current and over warm 
extratropical ocean currents, particularly the Gulf 
Stream and Kuroshio. The divergence of sensible 
heat fluxes is minor compared with the other energy 
fluxes, except for the polar regions. The last predic-
tor field pertains to temperature advection (-adv(T)). 
Warm air advection prevails in the southern mid-
latitudes, especially on the western sides of the con-
tinents, and in monsoon regions. Cold air advection 
is a typical characteristic over cold ocean currents, 
oceanic upwelling regions and the polar caps. 

The changes per decade over the 1990-2019 pe-
riod are displayed in Fig. 3 for the eleven predictor 
fields and 2 m temperature, using the same arrange-
ment as in Fig. 2. The temperature trend pattern has 
already been dealt with in the previous subsection. 
Sensible heat fluxes have decreased since 1990 in 
most regions, while latent heat fluxes have increased 
over many oceanic regions, yet the trend pattern is 
quite noisy. The trend patterns of solar irradiation 
and greenhouse effect are negatively correlated, 
probably due to enhanced cloudiness that reduces 
short-wave irradiance but favors downward long-
wave radiation at the surface. Albedo has become 
weaker along sea-ice margins and in some high-
mountain regions. Outgoing long-wave radiation di-
rectly reflects the trend pattern of near-surface tem-
perature. The trend patterns of surface net radiation 
and of the four predictor fields that are related to 
atmospheric circulation are spatially quite incoher-
ent. There is a tendency towards stronger warm air 
advection in higher latitudes and more heating from 
convergent energy fluxes in the tropical oceans. 

3.3 Spatial statistical model applied to NCEP

As a first glimpse on the spatial link between 
annual-mean temperature trend patterns and predic-
tor fields, Tab. 3 shows the spatial correlation coef-
ficients with respect to all three trend periods. Note 
that the sample comprises 10,224 grid boxes and, 
hence, the critical value for statistical significance is 

very small, even when accounting for the spatial au-
tocorrelation in the temperature field (cf. subsection 
2.3). The closest link is found between the trend pat-
terns of temperature and surface long-wave emission, 
with correlation coefficients of about 0.9. However, 
this statistical relationship is trivial because emission 
is a direct nonlinear function of temperature (E = σ · 
T4, with Stefan-Boltzmann constant σ). For this rea-
son, upward long-wave radiation is omitted from the 
list of potential predictors in the multiple regression 
model, noting that there are also some more indirect 
feedbacks between temperature and the other pre-
dictors. Quite high positive (negative) correlations 
exist with changes in downward long-wave radiation 
(albedo). This is in perfect agreement with theoreti-
cal considerations. Variations in sensible heat fluxes, 
surface net radiation and divergence of Q and H flux  
vector account for up to 10 % of the total variability 
of temperature trend patterns. The remaining four 
predictor fields only play a minor role. This picture 
is identical for all seasons (not shown). In summary, 
none of the selected predictors alone provides a sat-
isfactory explanation for the spatial heterogeneity of 
temperature trends from NCEP (nor CRU).

In the next step, we deploy a spatial multiple re-
gression model that is based on the ten remaining 
predictor fields and the temperature trend pattern 
as predictand. The main results are summarized in 
Tab. 4 for different trend periods and seasons. The 
total explained variance of the statistical model 
amounts to 80-95 % of the spatial variability of the 
cooling and warming patterns since 1948, at an error 
level of α = 1%. The explained variance is system-
atically higher in boreal winter rather than summer. 
The step-wise multiple regression model is combined 
with a bootstrapping approach for cross validation, 
dedicated to identify the ranking of predictors and 
the number of robust predictors. For this purpose, 
the root mean square error (RMSE) between the pre-
dictand and the predicted values from the model is 
computed for the retained independent data (here 
1,000 out of 10,224 grid boxes, cf. subsection 2.3). 
The maximum number of robust predictors is given 
by the RMSE minimum in the spectrum over all 
predictors. Tab. 4 reveals that all ten predictor fields 
are identified as robust predictors. On the one hand, 
this is surprising because some of the predictor 
fields have similar spatial structures (cf. Fig. 3) and, 
hence, are subject to multi-collinearity. On the other 
hand, the total number of predictors is very small 
compared with the sample size and heterogeneity of 
the patterns. Therefore, every predictor contributes 
valuable information, at least for a sub-region of the 
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Fig. 3: Trends per decade of  annual-mean temperature and related climate variables from the NCEP reanalysis during the 
1990-2019 period, for variable names see Tab. 3.
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Tab. 3: Spatial correlation coefficients between the annual-mean temperature trend pattern and trend patterns of  related 
climate variables from the NCEP reanalysis during different periods (the critical value at an error level of  5% is |r| > 0.08, 
including the spatial autocorrelation in the temperature field, cf. subsection 2.3). 

Variable Symbol

Correlation coefficient

Period
1948-2019

Period
1948-1977

Pperiod
1990-2019

Sensible heat flux H 0.23 0.11 0.22

Latent heat flux L 0.06 -0.14 -0.06

Surface solar irradiation I 0.01 -0.19 0.02

Surface albedo A -0.44 -0.54 -0.46

Greenhouse effect at surface G 0.22 0.70 0.50

Surface terrestrial emission E 0.87 0.93 0.92

Surface net radiation Q 0.06 0.30 0.18

Divergence of  Q flux vector -div(Q flux) 0.16 0.16 0.14

Divergence of  H flux vector -div(H flux) 0.15 0.16 0.10

Divergence of  L flux vector -div(L flux) 0.12 0.10 0.11

Temperature advection -adv(T) 0.00 0.10 0.15

Tab. 4: Results of  a spatial multiple regression model to explain the global temperature trend patterns from NCEP in dif-
ferent periods and seasons: explained variance of  the model in %, error level of  the model in %, number of  cross-validated 
predictors, and most important predictor (same symbols as in Tab. 3).

Period Season Explained variance Error level Number of  predictors Leading predictor

1948-2019

ANNUAL 86.6 1 10 A

DJF 94.2 1 10 G

MAM 85.3 1 10 A

JJA 83.0 1 10 Q

SON 92.6 1 10 G

1948-1977

ANNUAL 88.7 1 10 G

DJF 94.3 1 10 G

MAM 87.9 1 10 G

JJA 84.1 1 10 G

SON 91.1 1 10 G

1990-2019

ANNUAL 89.1 1 10 G

DJF 94.6 1 10 G

MAM 85.7 1 10 G

JJA 78.8 1 10 G

SON 93.9 1 10 G
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predictand. In most analyzed periods and seasons, 
downward long-wave radiation represents the lead-
ing predictor, sometimes it is albedo or surface net 
radiation. In summary, the total explained variance 
of the multiple regression model is substantially 
higher than the individual contributions of every 
single predictor (cf. Tab. 3). This implies that either 
more than one mechanism accounts for near-surface 
temperature changes or that different regions are af-
fected by different mechanisms. This question will 
be picked up in the next subsection.  

Fig. 4 demonstrates that the 1948-1977 cooling 
pattern and the 1990-2019 warming pattern can in-
deed be reproduced by the spatial statistical model 
with reasonable accuracy: the original temperature 
trend patterns from NCEP (Fig. 1) and the ones 
predicted by the model (top panels in Fig. 4) are 
largely coherent. The model slightly overestimated 
the Northern Hemisphere cooling in the mid-20th 
century and the recent warming over most land-
masses (middle panels). For the overall ranking of 
the predictor fields, a counting statistic is used over 
all five seasons and 50 iterations of the model (bot-
tom panels). It is obvious that the greenhouse effect 
prevails as leading predictor in both periods. During 
the cooling phase, the second rank is occupied by ei-
ther sensible heat fluxes or solar radiation, while the 
latter dominates during the recent warming phase. 
The subsequent ranks are assigned to the compo-
nents of the surface radiation balance. Since 1990, 
temperature advection has played a more important 
role than during the decades before. Changes in la-
tent heat flux usually occupy the last rank, as to be 
expected (cf. subsection 2.2).

3.4 Temporal statistical model applied to NCEP

With the temporal statistical model, we aim at 
tailoring the model more to the local characteristics 
of temperature changes. This model is based on de-
trended time series (not patterns) of the predictand 
and the ten predictors at every grid box plus the 
global-mean time series of increasing CO2-equivalent 
greenhouse gas concentrations. The results for annu-
al-means are mapped in Fig. 5 for the mid-20th cen-
tury cooling phase and the recent warming period. 
First of all, it must be stated that both time windows 
exhibit very similar results: the temporal statistical 
approach accounts for almost 100 % of total tem-
perature variability in most grid boxes (top panels), 
implying that the predictor selection is adequate and 
the assumed linearity does not represent a major 

constraint. Interesting insight is given by the regions 
where the explained variance partly goes down to 60 
% minimum: in some high-mountain areas, along 
sea-ice borders and in some oceanic sectors, espe-
cially in upwelling regions, the model is less success-
ful because additional mechanisms or nonlinearities 
play a larger role in the temporal evolution of near-
surface temperature. 

The number of robust predictors varies between 
4 and 11 (middle panels). Note that the 11 predictors 
are numbered from 2 to 12 because the long-term 
mean as the simplest prediction is assigned number 
1. On average, the number of robust predictors is 
higher in the low latitudes compared with extratropi-
cal landmasses and polar regions. As the explained 
variance is still high in the latter areas, it means that 
the identified predictors make large contributions to 
total temperature variability. Downward long-wave 
radiation is the main driver of cooling and warm-
ing in most regions across the planet (bottom pan-
els). However, in some oceanic sectors sensible heat 
fluxes are more relevant. Dynamical predictors, i.e. 
divergent energy fluxes, play an important role in the 
low latitudes, particularly in monsoonal regions. The 
time series of increasing greenhouse gases prevails 
in a very limited number of grid boxes in the tropics 
and subtropics, but is more present since 1990 than 
in the mid-20th century. Different seasons barely dif-
fer in terms of the findings illustrated in Fig. 5 (not 
shown).

Fig. 6 displays the ranking of the predictors over 
50 model iterations and their individual contribu-
tions to total explained variance of the statistical 
model. It has been found that the predictor rank-
ing differs more from region to region than between 
time periods or seasons. Therefore, Fig. 6 distin-
guishes between regional averages over the Northern 
Hemisphere polar region (60°-90°N), the mid-lati-
tudes (30°-60°N) and the low latitudes (0°-30°N). 
North of 60°N, the greenhouse effect clearly stands 
out as the leading predictor, followed by changes in 
sensible heat fluxes and the remaining components 
of the surface radiation balance. The dynamical pre-
dictors occupy the last ranks. Most of the explained 
variance accounted for by the statistical model is as-
signed to the leading predictor (no. 2, almost 80 %), 
while the climatological mean (no. 1) has no predic-
tive skill at all. In the Northern Hemisphere tropics 
and subtropics, changes in surface radiation still play 
a dominating role but dynamical changes are much 
more prevailing. The time series of increasing green-
house-gas concentrations (GHG in Fig. 6) often rep-
resents the least important predictor. The individual 
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Fig. 4: Estimated annual-mean temperature trend patterns derived from the spatial multiple regression model (top panels) 
for the periods 1948-1977 (left) and 1990-2019 (right), the respective biases from the original temperature trend patterns (mid-
dle panels), and ranking of  predictors with counts over 5 seasons and 50 model iterations (bottom panels, same symbols as 
in Tab. 3), based on the NCEP reanalysis (unit is °C/decade).
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contributions to total explained variance are more 
equally distributed among the predictors. The mid-
latitudes represent a transition zone with respect to 
the predictor ranking. We also repeated the statistical 
model approach without de-trending the time series: 
in this case, the global-mean time series of enhanced 
greenhouse-gas concentrations is always one of the 
leading four predictors (not shown).

3.5 Temporal statistical model applied to climate 
models

In the last step of this study, the temporal statis-
tical model is applied to output from coupled climate 
models, covering the 1948-2100 period. The main 
focus is on the MPI-ESM model because it is state-of-
the-art in terms of the included processes and forc-
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Fig. 5: Results of  a grid box-based temporal multiple regression model to explain annual-mean temperature time series from 
NCEP during the periods 1948-1977 (left) and 1990-2019 (right): explained variance of  the model in % (top panels), number 
of  robust predictors (middle panels) and leading predictor (bottom panels, same symbols as in Tab. 3).
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ing components in the past and future (cf. subsection 
2.1). Thus, it is assumed to reproduce the patterns 
and mechanisms of temperature changes as derived 
from the NCEP reanalysis. In order to assess differ-
ences between climate models, we also investigate 
two other climate models that are characterized by 
lower complexity and have been found to have less 
skill with respect to the observed temperature trend 
patterns (cf. ring et al. 2019). 

For the MPI-ESM model, the annual-mean dec-
adal temperature trends over different periods in 
the past and future are listed in Tab. 5. The climate 
model produces slightly higher warming rates during 
the 1948-2019 and 1990-2019 periods compared with 
NCEP. The mid-20th century cooling is not simulat-
ed, but the warming is much smaller than during any 
other time window and statistically not significant. 
Until the end of the 21st century, the temperature rise 
accelerates continuously, reaching up to 0.71°C per 
decade over land areas. The ocean-to-land contrast in 
the global warming pattern also increases until 2100.  

Fig. 7 shows the global-mean time series of near-
surface temperature from MPI-ESM and the trend 
patterns over two time spans in the past and two in 
the future. Compared with the NCEP reanalysis (cf. 
Fig. 2), it is obvious that the cooling phase during the 
1948-1977 period looks quite different: there are sev-
eral areas with decreasing temperature but the hemi-
spheric asymmetry is not reproduced by the climate 
model. In contrast, the warming patterns since 1990 
look very much the same in NCEP and MPI-ESM, in-
cluding the equator-to-pole gradient and the ocean-
to-land contrast. In the middle and late 21st century, 
this basic structure is more and more apparent and 
near-surface heating becomes a circumglobal phe-
nomenon. The comparative climate models with 

lower complexity reproduce only one aspect of the 
observed temperature changes, i.e. the maximum 
heating of the Arctic Ocean (not shown). Other main 
structures such as the ocean-to-land contrast are not 
simulated, and the climate model from the CMIP3 
family still projects major cooling areas over Northern 
Hemisphere landmasses during the 2071-2100 period.  

The results of the temporal statistical model that 
have been derived from the NCEP reanalysis (cf. Fig. 
5), are also found for MPI-ESM and for the other 
two climate models (not shown). The only difference 
is that the global-mean time series of enhanced at-
mospheric greenhouse conditions prevails more and 
more as leading predictor towards the end of the 21st 
century, especially in the low latitudes. This is also 
illustrated by the predictor matrices for MPI-ESM 
(Fig. 8): during the last 30 years of our century, the 
mechanisms of surface warming reveal the same ba-
sic structure as found in NCEP during the 1948-2019 
period (cf. Fig. 8), with the components of surface 
radiation balance being the most relevant drivers and 
dynamical processes being more important in low 
rather than high latitudes. However, future tempera-
ture time series follow more straightly the monoto-
nous forcing by increasing atmospheric greenhouse-
gas concentrations. The other two climate models 
exhibit basically the same predictor ranking as in 
NCEP and MPI-ESM (not shown).

4 Discussion of  results

During the 1948-1990 period, NCEP exhibits 
the well-known temporal features of global-mean 
near-surface temperature changes: a slight cooling 
phase until the 1970s and a considerable temperature 
increase since the 1980s (cf. IPCC 2007, 2013). Both 
phenomena have been interpreted by many authors 
in the light of natural climate drivers and enhanced 
anthropogenic greenhouse gas and aerosol concen-
trations (e.g. Stott et al. 2000; PaetH 2015). When 
comparing the NCEP temperature time series av-
eraged over the landmasses with the one from the 
station-based CRU data set, it becomes evident that 
NCEP and CRU are in excellent agreement with each 
other in terms of the long-term trend and even inter-
annual variability, but NCEP overestimates the cool-
ing during the mid-20th century due to a warm bias 
in the 1950s (cf. SimmonS et al. 2004).

Over the landmasses, the trend patterns from 
NCEP and CRU are quite coherent (cf. SimmonS et 
al. 2004). In addition, NCEP mainly reproduces the 
trend patterns illustrated by IPCC (2013, Fig. 2.22) 

Tab. 5: Annual-mean temperature trends from the MPI-ESM 
climate model in different periods averaged over the globe, 
the land area and the ocean area (unit is °C/decade). Bold 
numbers indicate linear trends significant at the 5% level.

Period Globe Land area Ocean area

1850-2100 0.18 0.25 0.15

1948-2019 0.20 0.28 0.16

1948-1977 0.12 0.17 0.10

1990-2019 0.33 0.48 0.27

2031-2060 0.41 0.60 0.34

2071-2100 0.52 0.71 0.44



242 Vol. 74 · No. 4

with mid-20th century cooling over large parts of 
the Northern Hemisphere and a warming tendency 
prevailing since 1990. The recent warming rates are 
characterized by an equator-to-pole gradient and an 
ocean-to-land-contrast as reported by several previ-
ous studies (e.g. Broccoli et al. 1998; Jain et al. 1999; 

Boer 2011; SHi and BueH 2012). NCEP also reveals 
some regional and seasonal details of observed tem-
perature changes, e.g. the cooling of Antarctica in 
austral summer that is probably related to enhanced 
cyclone activity in the Weddell Sea, a stronger south-
ern annular mode and ozone dynamics (PaetH and 
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Pollinger 2010; nicolaS and BromWicH 2014; 
turner et al. 2016). The same holds for the spots of 
slight cooling still occurring since 1990, namely in the 

North Atlantic, likely due to changes in the Atlantic 
meridional overturning circulation (driJtHout et 
al. 2012), in the tropical Pacific and in the Southern 
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Fig. 8: Same as Fig. 6 but for the period 2071-2100, based on data from the MPI-ESM climate model.
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Ocean (cf. SimmonS et al. 2004; IPCC 2013; JoneS 
et al. 2013). In contrast, NCEP appears to produce 
spurious cooling trends in the Andes. 

The leading predictor in the cooling and warm-
ing period is downward long-wave radiation at the 
Earth’s surface. Although this predictor is also 
named the atmospheric greenhouse effect, it is much 
more complex than the time series of monotonously 
increasing greenhouse-gas concentrations. It may 
be affected by enhanced radiative forcing, but also 
includes feedbacks via surface energy fluxes, at-
mospheric water vapour content and cloudiness as 
well as signals from natural forcings (solar and vol-
canic activity) and internal variability (Wallace and 
HoBBS 2006; Hantel and HaimBerger 2016). Thus, 
a possible mechanism is that increasing greenhouse 
gas concentrations induce stronger sensible and la-
tent heat fluxes into the atmosphere, higher water 
vapour content as the most efficient natural green-
house gas (cf. FloHn et al. 1992), deeper convection 
and enhanced cloudiness at greenhouse-sensitive 
atmospheric levels. This mechanism is obviously 
modulated by the land-sea contrast, topography, land 
surface conditions, climate seasonality and latitude-
related conditions such as solar incidence and tropo-
pause height. In addition, warming in high latitudes 
and high altitudes is strongly affected by reduced 
surface albedo, indicating an ice-albedo feedback in 
regions with snow and ice cover (cf. Jain et al 1999). 
In the low latitudes, especially in monsoon regions 
and along the ITCZ, changes in wind divergence and 
related energy fluxes play a noticeable role. In sum-
mary, our analysis gives support to the argumenta-
tion by Boer (2011), suggesting that complex time-
dependent local feedbacks are more relevant to the 
patterns of observed temperature changes than the 
static contrast of thermal inertia between ocean and 
land surfaces (Broccoli et al. 1998). 

Advection processes occupy a medium rank 
among all considered predictors. Changes in the ad-
vection term have been found to be quite noisy at 
the grid box scale. Therefore, the large-scale effect 
of advection may be better represented by index time 
series of circulation phenomena such as the North 
Atlantic Oscillation or the northern and southern 
annular modes that govern these processes at the 
climatological time scale (rautHe and PaetH 2004; 
PaetH and Pollinger 2010; IPCC 2013). 

A linear combination of up to 11 predictors 
achieves around 90 % of total variance in the spatial 
modelling approach and almost 100 % in the tempo-
ral approach, even when using de-trended time series. 
The fact that the temporal approach outperforms 

the spatial one may be interpreted as an indicator for 
the spatial heterogeneity of the relevant mechanisms. 
However, it may also emanate from the very different 
ratios of number of predictors to sample size (10 to 
10,224 for the spatial model versus 11 to 30 in the tem-
poral approach). In some high-mountain areas, along 
sea-ice margins and in oceanic upwelling regions, the 
residual part of temperature variability not accounted 
for by our statistical model amounts to 10-40 %. In 
these regions, additional mechanisms, subgrid-scale 
and/or nonlinear processes play a more important role 
(cf. Boer 2011). While the trend patterns of near-sur-
face temperature clearly differ from period to period 
and season to season, the underlying mechanisms, i.e. 
the predictor ranking, are virtually the same. 

The amplitude and spatial structure of the ob-
served mid-20th century cooling phase is barely re-
produced by the MPI-ESM Earth system model al-
though it is state-of-the-art in terms of the complex-
ity of the simulated climate system and the imposed 
natural and anthropogenic forcings. It has been ar-
gued that some of the 20th-century climate variations 
are partly related to internal variability and, hence, 
cannot be replicated by climate model simulations 
with randomized initial conditions (korHonen et al. 
2010). In contrast, the warming pattern since 1990 is 
very coherent between climate model, reanalysis and 
CRU station data, revealing the well-known equator-
to-pole and ocean-to-land gradients (cf. Jain et al. 
1999) and even including the slight cooling tendency 
in the North Atlantic (driJtHout et al. 2012). van 
oldenBorgH et al. (2013) have reported on the abil-
ity of CMIP5 models to simulate the observed pat-
terns of recent warming when all natural and anthro-
pogenic climate drivers are correctly implemented. 
JoneS et al. (2013) have defined this a major im-
provement of CMIP5 compared with CMIP3 models. 
However, they also stated that CMIP5 models do not 
adequately reproduce the observed cooling patches 
in the tropical Pacific and Southern Ocean. To a cer-
tain extent, this is also found here when comparing 
MPI-ESM and NCEP. It is likely due to missing pro-
cesses in the climate model such as changes in sea-
salt aerosols (korHonen et al. 2010) and melting ice 
shelfs (BintanJa et al. 2013).

Until the end of the 21st century, the warming 
rates steadily increase, culminating in 0.71°C per 
decade over the landmasses. knutSon et al. (2013) 
have demonstrated that the CMIP5 multi-model en-
semble mean exhibits weaker warming rates than ob-
served. For MPI-ESM the opposite is true, implying 
that this model has an above-average climate sensi-
tivity in the CMIP5 framework. The ocean-to-land 
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contrast in terms of the spatial-mean temperature 
rise per decade enhances as well from 0.07°C in the 
mid-20th century to 0.27°C after 2071. Sutton et al. 
(2007) have drawn the same conclusion from CMIP3 
models. The NCEP reanalysis foreshadows this ten-
dency when comparing the warming rates over the 
1948-2019 period. The intensification of the equator-
to-pole gradient and ocean-to-land contrast in the 
global warming pattern will affect crucial phenom-
ena in the climate system that arise from horizon-
tal temperature gradients, i.e. monsoons, land-sea 
breeze systems, jet streams, atmospheric waves and 
weather variability (e.g. Jain et al. 1999; Sutton et al. 
2007; PaetH and Pollinger 2019).

The statistical model has identified virtually the 
same underlying mechanisms in present-day and fu-
ture warming patterns. In addition, the ranking of 
predictors is more or less identical in climate models 
that do not reproduce the observed warming pattern 
since 1990. Thus, this model failure is not caused by 
different thermodynamic principles and involved 
feedbacks relevant to temperature simulation, but by 
different forcings and/or different climate sensitivity 
to the imposed forcings.

5 Conclusions

Returning to the first scientific hypothesis for-
mulated in section 1, it can be concluded that none of 
the selected predictors alone can account for the spa-
tiotemporal heterogeneity of observed and simulated 
temperature changes. At every grid box, tempera-
ture variations arise from a combination of several 
mechanisms, mainly related to the surface radiation 
balance. In addition, these mechanisms vary from 
region to region, particularly between low and high 
latitudes. The limited number of predictor fields and 
the assumed linearity of the statistical transfer func-
tions do not represent major constraints to the expla-
nation of the heterogeneous warming pattern. 

Climate models are indeed able to reproduce the 
observed warming pattern with high accuracy, but 
only if they are state-of-the-art with respect to the 
complexity of the simulated climate system and the 
imposed natural and anthropogenic forcings. Yet, 
the second hypothesis must be rejected: the under-
lying processes of global warming barely differ be-
tween past and future periods. The same predictor 
fields are responsible for the mid-20th century cool-
ing phase, for the recently observed warming pattern 
and for future surface heating under the assumption 
of a business-as-usual emission scenario. Strictly 

speaking, this is not surprising because the selected 
predictors are more or less complete regarding the 
theory of temperature changes (see subsection 2.2). 
However, it is an unexpected result that the predictor 
ranking does not noticeably change between differ-
ent time periods, except for an increasing impact of 
monotonously enhanced greenhouse gas conditions 
over the 21st century. In fact, downward long-wave 
radiation is the main driver for the 1948-1977 cool-
ing and, at the same time, for the subsequent warm-
ing era between 1990 and 2100. Thus, the processes 
associated with the atmospheric greenhouse effect, 
i.e. changes in evapotranspiration, water vapour con-
tent, cloudiness and greenhouse gas concentrations, 
are more responsible for near-surface temperature 
variations in most regions of the globe than changes 
in surface albedo, solar radiation, energy flux diver-
gence or temperature advection.
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