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Summary: Some of the most obvious consequences of anthropogenic climate change are observed changes in the dates of
the occurrence of phenological events. Most prominently, observations from the Northern Hemisphere’s extratropics indicate
an eatlier occurrence of spring events. Recent climate models include land sutface schemes that provide representation of the
vegetation. However, they are limited in simulating the plants’ response to climate change. In this study we present results of a
dynamical-statistical modeling approach for phenology in southeastern Germany, combining climate change simulations provid-
ed by a high resolution, state-of-the-art regional climate model (RCM) with three different types of regression methods: ordinary
least squares (OLS), least absolute deviation (LAD) and random forest (RFO). We focus on changes in the day of the year (DOY)
of Forsythia suspensa flowering, the earliest phenophase of the growing season in Bavaria. Based on roughly 2600 observations,
collected at 94 phenological and 26 meteorological stations between 1952 and 2013, we compare the regressions via a bootstrap,
using once 13 and once 4 meteorological variables as predictors. Altogether, we find the regressions with less variables to be more
robust, while the regression estimates are nearly identical. Explained variance and RMSE (root mean square error) are 54.8 % and
8.8 days for RFO and 51.2% and 9.1 days for the other regressions. These trained and cross validated statistical models are used
to estimate the effects of future climate change on the DOY by applying them to the RCM simulations. For OLS or LAD, under a
low (high) greenhouse gas emission scenatio, we find a mean advance of the DOY of 8 (15) days by the end of the 21th century
compared to the base petiod from 1961 to 1990. The spatial pattern of the change resembles the topography, with the strongest
trends in the DOY over mountainous regions as a consequence of a simultaneous rise in temperatures and reduction in snow
depth. RFO is restricted to the range of the observations and hence the response to the simulated climate is damped, resulting in
an advance of DOY of only 5 (8) days and a reduction in variance. There is no apparent spatial pattern identifiable. Altogether,
we find OLS and LAD to be more suitable for dynamical-statistical modeling of phenology than RFO.

Zusammenfassung: Zu den augenfilligsten Folgen des anthropogenen Klimawandels gehéren beobachtete Verdnderungen
im zeitlichen Auftreten von phinologischen Ereignissen. Am markantesten deuten Beobachtungen aus den Auf3ertropen der
Nordhalbkugel auf den fritheren Eintritt von Frihlingsereignissen hin. Aktuelle Klimamodelle verfigen tiber Landoberfla-
chenschemata zur Abbildung der Vegetationsdynamik, allerdings sind sie nur eingeschrinkt dazu in der Lage die Reaktion
von Pflanzen auf Klimainderungen zu simulieren. In dieser Studie prisentieren wir Ergebnisse eines dynamisch-statistischen
Modellierungsansatzes fir Phinologie in Bayern. Dafiir kombinieren wir hochaufgel6ste Klimawandelsimulationen eines aktu-
ellen, regionalen Klimamodells (RCM) mit drei verschiedenen Regressionsmethoden: Gewohnliche-Kleinste-Quadrate (OLS),
Geringste-Absolute-Abweichung (LAD) und Random Forest (RFO). Wir untersuchen Anderungen im Eintrittsdatum der Bliite
von Forsythia suspensa, der frihesten Phdnophase der Vegetationsperiode in Bayern. Bei einer Datengrundlage von etwa 2600
Beobachtungen, die an 94 phianologischen und 26 meteorologischen Stationen zwischen 1952 und 2013 erhoben wurden, nut-
zen wir Bootstraps um die Regressionen je mit 13 und 4 meteorologischen Variablen als Pridiktoren zu vergleichen. Insgesamt
erweisen sich die Regressionen mit der geringeren Anzahl Variablen als robuster, wihrend die Regressionsschitzer beinahe
identisch sind. Fiir den RFO ergibt sich eine erklirte Varianz von 54.8 % und ein RMSE (die Wurzel des mittleren quadratischen
Fehlers) von 8.8 Tagen, die anderen Regressionen erreichen 51.2 % bzw. 9.1 Tage. Mit diesen so trainierten und kreuzvalidierten
statistischen Modellen schitzen wir die Effekte des kiinftigen Klimawandels auf das Eintrittsdatum der Bliite indem wir sie
auf die RCM Daten tibertragen. Fiir OLS und LAD finden wir fiir ein Szenario mit geringen (hohen) Treibhausgasemissionen
cine mittlere Verfrihung des Blihdatums von etwa acht (15) Tagen bis zum Ende des 21.Jahrhunderts im Vergleich zur Refe-
renzpetiode 1961 bis 1990. Im rdumlichen Muster zeichnet sich die Topographie ab. Dabei zeigen sich die stirksten Trends in
hochgelegenen Regionen, bedingt durch die gleichzeitige Erhéhung der Temperatur und Reduktion der Schneetiefe. Die Schat-
zungen von RFO sind auf den Wertebereich der Beobachtungen beschrinkt. Entsprechend fillt die Reaktion auf die simulierte
Klimaidnderung mit einer Verfrithung von nur 5 (8) Tagen und einer Reduktion der Varianz gedimpft aus. Ein offensichtliches
raumliches Muster ist nicht zu erkennen. Insgesamt erscheinen uns OLS und LAD fiir die statistisch-dynamische Modellierung
von Phinologie als besser geeignet als RFO.
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1 Introduction

Phenology deals with recurrent biological events
including the causes of their timing with regard to
abiotic factors, amongst others (LirTH 1974). For a
specific plant at one specific location, without the
occurrence of natural disaster or human interfer-
ence, the intraannual changes of climatic conditions
are the main drivers of the plants’ annual cycle, the
most obvious in regions characterized by pronounced
thermic or hygrid seasons as well as a dynamic veg-
etation (see ScHwARTZ 2013). Also, the year-to-year
variations of the onset of certain phenological phases
is in large parts caused by variations of the region-
al climate. In the last decades, one special focus of
phenological studies has been the shift in the well
documented phenological phases as a consequence of
climate change. In particular, there is overwhelm-
ing evidence from hundreds of species throughout
the Northern Hemisphere for an earlier occurrence
of spring events (see for example FIELD et al. 2014
and the reviews of MENZEL et al. 2006; CLELAND et al.
2007; RicHARDSON et al. 2013 and references therein).
These individual responses might result in unforeseen
ecological consequences (THACKERAY et al. 2016).

The most sophisticated tools for exploring the
effects of climate change are three-dimensional
circulation models (TAYLOR et al. 2012). A special
group of these are regional climate models (RCMs),
which, due to their high spatial resolution, are es-
pecially useful for investigating the environmen-
tal impacts of climate change (GIORGI et al. 2000).
However, while these models combine numerous
modules for incorporating physical and biological
aspects of the climate system (FLATO et al. 2013),
current land surface schemes are not capable of
modeling vegetation phenology satisfactorily, not
to mention the response of individual phenological
phases (RICHARDSON et al. 2012).

Given these apparent deficiencies of climate
models, to study the response of vegetation or spe-
cific plants to future climate change, empirical mod-
els are employed. A common way to do this is to use
observational data to derive a statistical relationship
between the target variable, e.g. the day of the year
(DOY) of the occurrence of a phenological phase,
and a set of observed meteorological variables as pre-
dictors (e. g. MENZEL 2003; Ma and Znou 2012). If
the established relationship appears to be robust, it
is possible to apply the empirical model to climate
model simulations, e.g. to estimate the phenological
response to projected climate change. This approach
is wusually called dynamical-statistical modeling

(PAETH et al. 2008; AwovE et al. 2017). A number
of empirical, often called process-based, phenology
models of different complexity exists (e.g. HANNINEN
et al. 1994; ScHABER and BAaDpECK 2003; SETTYONO et
al. 2007; MorIN et al. 2009) and some of these have
been used in a dynamical-statistical approach, e.g. by
MicLiavacca et al. (2012) and MoriN et al. 2009 for
studies in North America. However, those models
are typically designed for specific plants and phe-
nological phases and might even perform badly for
validation data (see RicHARDSON and O’KEEFE 2009
for a discussion).

Thus, given the large number of regions, plants
and phases for which information about their re-
sponse to climate change signals might be crucial
for adaption, purely statistical models (e.g. ESTRELLA
and MENzEL 2006; Privack et al. 2009) should also
be considered for exploring these questions. An ap-
propriate general statistical tool for this is regression
analysis. Albeit commonly associated with linear, or-
dinary least squares (OLS), there are a number of dif-
ferent approaches available. Typically, these address
some of the apparent weaknesses of OLS, such as a
lack of robustness in the presence of extreme values
or outliers. Furthermotre, modern methods of sta-
tistical learning seem to perform better in terms of
prediction, often by avoiding to constrain the predic-
tions by assuming a global, relatively simple math-
ematical function as OLS does (HasTiE et al. 2008).

One aim of this paper is to demonstrate the
usefulness and flexibility of the dynamical-statisti-
cal approach. We focus on changes in the DOY of
Forsythia suspensa flowering for Bavaria, Germany, but
the method could be transferred to other phenologi-
cal features without large adaptions, especially as we
demonstrate how to make use of spatially heteroge-
neous data. In this study, we employ and compare
three types of regression for dynamical-statistical
modeling: the parametric OLS and least absolute
deviation regression (LAD) and the Random Forest
algorithm (RFO), which has gained a lot of attention
since its introduction (BREIMAN 2001) and has been
widely adopted by data scientists.

We further use a high-resolution, state-of-the art
RCM to estimate the effects of climate change. As we
use two different emission scenatios we are able to
estimate the potential for mitigation.

The paper is organized as follows: in section two,
we introduce our study area, present our data and
briefly discuss the principles of the three regressions.
We further present the measures of model quality
we use for model comparison and the bootstrap for
estimating their robustness and reliability. Also, the
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pre-processing of the various datasets is explained.
The next section contains the results of the study,
which are discussed in section four before we draw
our conclusions.

2 Material and methods
2.1 Study area

Bavaria is located in Central Europe and is,
with an area of approximately 70500 km?, the larg-
est federal state of the Federal Republic of Germany.
The climate is notably moderate with a slight gra-
dient from more maritime conditions (Cfb climate
in the Koeppen classification) in the north-western
part to more continental climate (Dfb) in the east
and south-cast of the study area. Consequently, the
prevalent natural vegetation type would be temper-
ate forest without the, in reality vastly dominating,
effects of human interference. Nowadays around
30% of the area are covered with woods and for-
ests. However, local conditions might differ largely
from these averages, especially due to elevation. The
southernmost part of Bavaria is part of the Alps and
hence characterized by an Alpine climate.

2.2 Observational data

We focus on the DOY of Forsythia suspensa’s
flowering. This phase is considered the beginning
of early spring as defined by the German Weather
Service (Bruns et al. 2015). This phenophase is
characterized by high wvariability, however, there
are indications of an overall shift towards eatlier
dates for Germany (MEeNzEL et al. 2001). Forsythia
suspensa is considered a good proxy for the effect of
climate variables like temperature. It is also part of
the Global Phenological Monitoring network and
the International Phenological Gardens of Europe
Program (CHMIELEWSKI et al. 2013).

Observational data is provided by the German
meteorological service and the Bavarian state office
for the Environment. Phenological data collection is
hereby carried out by a network of volunteers through-
out Germany, whilst meteorological data is measured
by operational weather stations. As the German me-
teorological service provides guidelines (Bruns et al.
2015) for the volunteers, the quality of the data can be
considered quite high. Altogether, we can use 2592 ob-
servations of the DOY from 94 phenological stations,
covering a time period from 1952 to 2013 (Fig. 1). We

are therefore optimistic that we cover the range of en-
vironmental and climatic conditions in Bavaria quite
well and that our statistical models can be reliably
tuned. We only use a small portion of the more than
1000 phenological stations in Bavaria. This is due to
the fact that we only consider stations for which there
were at least 10 years of observations available, so as to
get a realistic estimate of the average day of flowering
per station. All DOYs are transformed into anomalies
by subtracting this station mean.

The meteorological data consists of 13 variables,
measured by 26 meteorological stations (Fig. 1) and
provided in daily resolution. Please see the caption of
Fig. 2 for a listing. Together, these vatiables allow for
a rather complete assessment of each stations climate
and represent all available climatic information pos-
sibly relevant for phenology.

While data availability for our study area can be
considered quite positive, the predictors’ preparation
to obtain reliable results is not trivial. As the climatic
information in general is gathered at different places
than DOY, the pre-processing must ensure that it is
representative for the phenological station. In addi-
tion, the optimal time span to consider during the year
is a topic of discussion. Further, the statistical models
must not be sensitive to location specific aspects that
cannot be provided by climate models.

Altogether, we found our methods to produce
the best results if the following is applied: For each
phenological station we use climate data from the
nearest meteorological station. We calculate for each
variable accumulated anomalies over the 45 days be-
fore the station’s mean DOY. This is an effective way
to reduce the impact of climatic differences between
the stations due to topography as well as the influ-
ence of different types of soils or even anthropo-
genic long term effects such as buildings. We found
45 days sufficient to ensure that the relationship be-
tween meteorological variables and DOY is not too
strongly affected by the estimate of the mean DOY,
while we can still make use of the available informa-
tion. This is less the case when monthly or seasonal
means are used (e.g. MENZEL 2003; CHMIELEWSKI
et al. 2004; Primack et al. 2009). Thus, we account
for the individual characteristics of a location while
preventing a situation where the predictors really
are functions of the dependent variable, e.g. when
yearly measures are calculated in reference to the ac-
tual DOY. Note that anomalies are also much more
practical when transferring the statistical models to
climate model data, as this removes potential sys-
tematic differences between the climatology of the
model and the observed meteorological data.
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Fig. 1: Study area: elevation and locations of the phenological and meteorological stations used in
this study. Filling indicates the available years’ mean deviation in mean temperature from the long
term mean of the 45-day period considered. See the text for further explanations.

To estimate the validity of this somewhat heu-
ristic procedure, we address two aspects that could
potentially affect our results. The first is the distance
between phenological and meteorological station and
hence the validity of the climate data. According to the
provided meta data the maximum (mean) Euclidean
distance is about 20 (9.5) km. We are confident that
this doesn’t endanger the expressiveness of the anom-
alies. However, the maximum difference in elevation
is 1312 m and potentially harmful. The other issue
is concerned with the robustness of the mean DOY.
Considering that a maximum of 62 years of data is po-
tentially available per station, it seems unlikely that a
full 10-year record was gathered during years all char-
acterized by strong climatic anomalies of the same sign
(which could seriously affect the stations mean DOY).
For mean temperature, Fig. 1 shows differences for
each phenological station’s mean and the 1961-1990
mean of the meteorological station during the con-

sidered 45 days. As none of these deviations exceeds
half a standard deviation in either direction, they don’t
seem problematic in terms of representativity. Still,
this may be the case for a small number of stations,
whose impact on the regressions, however, should be
small given the overall sample size and the fact that
the possible range of the DOY is limited. Nonetheless,
a far-off estimate for the mean DOY might affect the
statistical-dynamical models’ local performance.

We investigate the relevance of these effects on
our results by redoing the analysis using three sub-
samples of our data. For that, we restrict our analysis
to a) stations for which the difference in elevation to
their next-neighbor meteorological station is less than
100 m, b) stations with 30 or more years of record and
¢ the intersection of a) and b).

Fig. 2 displays the correlations of the processed
variables. We intend to reduce the number of pre-
dictors as, in part due to our pre-processing, there
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Fig. 2: Correlations of the predictors. See the text for the ap-
plied pre-processing. Abbreviations are due to the German
meteorological service. TM: mean temperature; DD: vapor
pressure; NM: cloudiness; PM: air pressure; RFM: relative
humidity; FM: average wind speed; TX: maximum tempera-
ture; TN: minimum temperature; FX: maximum wind speed;
RR: precipitation; SO: sunshine duration; SH: snow depth

are strong correlations between several of the pre-
dictor variables (Fig. 2). Furthermore, the adaptation
of our procedure for other regions will be the easier
the smaller the number of variables. As a subset, we
choose mean temperature, mean wind speed, pre-
cipitation and snow depth, which represent different
aspects of Bavaria’s climate. Note that these tend to
have small correlations with each other but strong
correlations with several of the other variables.

2.3 Climate model data

The climate change simulations are part of
the internationally coordinated EURO-CORDEX
project (Jacos et al. 2014). We use daily data in a
0.11° x 0.11° horizontal resolution from the state-of-
the-art RCM MPI-CSC-REMO2009 (addressed as
REMO in the following) with boundary conditions
provided by the global climate model MPI-ESM-
LR. We consider two transient simulations, dif-
fering in the emitted amount of greenhouse gases
and, hence, their atmospheric concentration. The
Representative Concentration Pathway 4.5 scenario
(RCP 4.5) assumes a rather small increase, which re-
sults in an average rise of radiative forcing of 4.5 W/
m? by the end of the 21th century. The other con-
sidered scenario, RCP 8.5, is characterized by rather

high emissions, which result in an anthropogenic
radiative forcing of 8.5W/m? (Moss et al. 2008).
By utilizing both we can estimate the potential of
consequent mitigation measures for the reduction
of climate change impacts. Note that during the
historical period (1950-2005) both runs share the
same simulation driven by estimates of historical
greenhouse gas concentrations and natural forcin-
gs. Hence, there are no differences due to the initial
conditions and all differences between the simula-
tions can be attributed to the applied forcing.

We calculated snow depth by accumulating
snow depth changes, starting July 1% 1950, when
the surface snow amount for all concerned grid-
boxes is 0.

The REMO data is processed analogously to
the meteorological observations. We estimate the
mean DOY of each gridbox via its next-neighbor
of the phenological stations and calculate 45-day-
sums relative to these dates for all variables and
years. We normalize these time series with respect
to 1961-1990.

2.4 Statistical methods

Here we introduce the statistical models used in
this study. There are excellent references for all of
them, so we restrict this discussion to some general
features and foundations of each method to point
out their differences.

In general, regression analysis aims at fitting a
set of independent variables or predictors to a de-
pendent variable. Let y be a vector that contains [
independent realizations of ¥'and X'be a matrix that
contains [ row vectors x; of length J. Each x; con-
tains one realization x; per predictor X. Regression
analysis aims at finding a prediction j = E(Y|x). In
general, J; won’t meet J,; exactly. Instead, a predic-
tion error €; = y; — j; occurs. OLS and LAD employ
an explicitly stated function, whose coefficients are
to be estimated, to minimize a quantity based on
all e;. Both assume a parametric model that allows
to express the prediction as a linear combination of
the predictors. Using matrix notation these can be
written as J = Xb, if the first column of X contains
a constant factor 1 and b the regression coefficients
bo, by ..., by

The most common way to do this is OLS, which
minimizes X;e/. The analytical solution to this
problem is & = X(X"X)'Xy. OLS dates back to C.F.
Gauss and can be considered a cornerstone of sta-
tistics for more than a century. However, there are
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well known problems associated with it, of which
we tackle several in this paper: due to the deri-
vation of its coefficients, OLS is heavily affected
by outliers in the data. A relatively and absolutely
small number of unusual values for Y might influ-
ence the fitted model in such a way that no use-
ful application is possible. Furthermore, all devia-
tions of the model are attributed to the dependent
variable, while the predictors are considered true.
Typically, this assumption is at least questionable
when working with empirical data such as point-
measurements which are taken to be representative
for a nearby, but not identical, location.

LAD is quite similar to OLS, in terms that it
assumes the same underlying function. The differ-
ence is that LAD attempts to minimize the sum of
the absolute error of predictions X;|e;|. Hence, LAD
is significantly more robust towards numerical dis-
turbances in the data than OLS, which is of ad-
vantage in many real world applications (PORTNOY
and KoENKER 1997). There is no analytical solution
for this, however, and iterative algorithms must be
used. There might not even be a unique solution
for the coefficients at all. See DiELMAN 2005 for a
review.

The other type of regression considered uses
a local, non-linear approach. Here, fitting is done
without the constraints of an explicit model and
hence more flexible. These approaches typically
rely on a number of computationally expensive
procedures like bootstrapping and random feature
selection. The Random Forest (BrEimaN 2001) is a
good example for this.

A random forest consists of a number (here:
500) of classification and regression trees (CART,
BREIMAN et al. 1984), built by sequential binary
splitting of an independent bootstrap sample of
the data into G groups or nodes, attempting to
minimize X,%.,(y,—J,)°. Here the prediction j, is
simply the mean of node g The splits are based on
a - at each node randomly selected - subset of the
predictor variables. All nodes must contain at least
five observations. When no more splitting is pos-
sible, the predictor space is divided into distinct
and separated nodes. The tree estimates for the
predictand are defined as the mean of the nodes.
The estimates for additional data can be found by
classifying it according to the splitting rules. RFO
estimates of y are then built as the mean of the tree
estimates. Note that all predictions involved here
aren’t continuous but rather stepwise functions,
limited to the range of the training data, a point
that tends to get overlooked by users.

2.5 Model comparison and validation

We focus on two quantities to characterize and
compare the quality of our statistical models: The
cocefficient of determination R* represents the ex-
plained variance, hence the linear association of
the independent variable and the predictions. R? is
defined as the squared correlation of the observed
anomalies of the DOY and the statistical models’
predictions. Further, to estimate the actual preci-
sion of the predictions, we use the root of the mean
square errot:

RMSE = 4/ I’IZ&Z.

Also, statistical confirmation of a regression
model is a crucial point if the estimated models
are to be applied to an independent set of data.
For OLS there is a huge number of well-designed
procedures which allow - under some constraints
- for statistical interference for each coefficient
of a statistical model. However, there are by far
less accepted inferential techniques for LAD or
even for RFO. Therefore, in this paper, we pre-
fer to use an identical bootstrap approach for all
methods.

We divide our data into two subsets for the
training of the statistical models and their valida-
tion, respectively. For validation, we randomly se-
lect at least 25 phenological stations, representing
at least 500 samples. Then, the statistical models
are fitted to the rest of the data, called training
data. We apply these models to the validation data
and calculate the measures of model quality. This
is repeated 1000 times. Note that this is an inde-
pendent bootstrap, not affecting the one of RFO,
which is hence carried out 1000 times itself. This
methodology allows us to give estimates for the
uncertainty of the models’ coefficients even with-
out any prior knowledge or assumptions of their
statistical distribution.

Note that each model is fitted using data
from a great number of stations while other stud-
ies prefer to fit one regression per location (e.g.
PrimAck et al. 2009) or to an areal mean (MENZEL
2003). At least in our study, this would lead not
only to a loss in generalization but also to ob-
vious overfitting. Similar to regional frequency
analysis (HoskiNGs and WaLLis 1997), this is a
way to capture the statistical relationships be-
tween climate variables and phenology in Bavaria
rather than to model a number of specific time
series of DOYs.
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3 Results
3.1 Predictor subset

In Fig. 3 the results for out-of-the-box regressions
with 4 and 13 variables are depicted. These fits use
all available data. The scatterplots reveal that all six
regression models result in very similar estimates for
the anomalies of the DOY. As expected, the fits are
better when more predictors are considered, however,
the differences are small in terms of R? as well as of
RMSE. The latter rises in all cases by about 0.3 days,
while R? is reduced by approximately 3 %. Also the
correlations between the model predictions y are huge
(OLS: 0.98, LAD: 0.96 and RFO: 0.97), hence we con-
clude that the fits for 13 and 4 predictors barely differ.

The estimates for LAD and OLS are nearly indis-
tinguishable and RFO performs better than the two
parametric models. However, it is interesting that
a small number of potential outliers can easily be
identified in each of the panels of Fig 3. Therefore,
none of the fitted models is able to include these, no
matter which mathematical approach is considered
or whether or not we restrict our analysis to a subset
of variables.

3.2 Bootstrap evaluation

The results of the bootstraps are used to esti-
mate the consistency of our results. In the first step,
we compare the overall performance of the statisti-
cal models using 4 as well as 13 predictors. Fig. 4
displays the measures of model quality, together with
an estimate of their errors. In terms of R? as well as
RMSE, Fig. 4 indicates better results for RFO than
for OLS and LAD for both sets of predictors. As
this is true for both the training and validation data,
we are confident that this is not a consequence of
overfitting. So, the nonparametric approach appears
more successful in grasping the meteorological ef-
fects on the DOY than the linear parametric models.
As a restriction to this finding, it should be noted
that the RFO bootstrap estimates show the largest
spread, indicating that they depend more on the
training data than the other ones. However, there is
a considerable overlap of the margins of error for all
three regressions, so that the results of the statistical
models are altogether not that different. We also can
conclude that a simple linear model is not without
justification. Again, for OLS and LAD the results
show barely any differences.
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Fig. 3: Scatterplots of observed and simulated DOY anomalies of the flowering of Forsythia for three types of regressions,

using 13 (top) and 4 (bottom) predictors
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Fig. 4: Estimates for measures of model performance. Results for training datasets using 4 (train_04) and
thirteen predictors (train_13) and validation data (val_04, val_13) for all considered regressions with 4 and 13
predictors, respectively. Means +/- two standard deviations of R* and RMSE from 1000 model fits.

On average, all regressions explain more than
50 % of the DOY’s variance, both for training and
validation data. The mean RMSE is approximately
9 days for all models, again RFO performs better
than OLS and LAD. When only 4 predictors ate
taken into account, the performance of all regres-
sions drops, but only to a minor extend. On aver-
age, R? declines by 3% and the RMSE increases
by 0.3 days, so this subset of climate variables ob-
viously captures the bulk of relevant phenological
information. Note that the RFO results in these
cases are more similar to those of the parametric
models, which we interpret as an indicator that the
additional information from the 9 other predictors
is mainly non-linear.

A somewhat puzzling feature of Fig. 4 is that
in some cases the validation data seems to perform
better than the training data. This is a quite un-
common outcome of a bootstrap analysis, but can
be explained by the spurious data depicted in Fig.
3. Due to the selection algorithm, these are more
often part of training datasets and hence affect
those results more strongly. For RFO this is more
pronounced than for OLS and LAD.

3.3 Intermodel comparison

Fig. 5 shows results of the intermodel com-
parison. The correlation between the predictions
of all regressions is very high, for OLS and LAD
nearly perfect. Furthermore, as the mean RMSE
of these regression models is only about 0.5 days,
they appear to produce effectively the same es-
timates for the DOY anomalies. Note, however,
pairwise correlations between the estimates of

RFO and OLS/LAD are also very high, resulting
in a mean R* of about 87 % when 4 predictors
are used. The RMSE in these cases is somewhat
higher, around 3.5 days, but nonetheless the es-
timates of the different regressions are obviously
quite consistent. Again, these findings hold true
for both the training and the validation data. For
13 variables, the results are nearly identical, both
in terms of the overall structure and the numeri-
cal values of R? and RMSE.

For the parametric models, we can further ex-
plore the predictors based on their standardized
partial-regression coefficients. While for 4 con-
sidered predictors, all are found to be significant
for both parametric models, temperature — as ex-
pected — has the strongest effect on DOY. Here, a
change of one standard deviation of temperature
results in a change in DOY of about 0.65 stand-
ard deviations. Wind speed is found to have the
second strongest effect, but compared to the im-
pact of temperature it clearly takes a backseat. The
smallest effects are found for precipitation. An
earlier occurrence of flowering is typically associ-
ated with positive anomalies for temperature and
wind speed and negative ones for precipitation and
snow depth, physical measures of a mild winter or
an early onset of spring. These results are consist-
ent for OLS and LAD and don’t change much when
13 predictors are considered. However, due to the
pronounced correlation especially of the temper-
ature-based variables (see Fig. 2), the bootstrap
analysis shows large variances for some key predic-
tors. These models aren’t used for the dynamical-
statistical modelling. For RFO, scatterplots of the
predictions and each predictor variable indicate
qualitatively equivalent relationships.
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Fig. 5: Similar to Fig. 4 but estimates for model intercomparsion for all regressions.

3.4 RCM based estimates

Fig. 6 shows the mean development of the DOY
in the considered model domain for 1950-2100. The
gray zone in each panel marks the +/- 1 standard
deviation of the time series of the DOY, calculated
for the period 1961-1990, for which the means are
all zero due to our normalization of the data. This
area can be regarded as the range of typical differ-
ences in DOY between two subsequent years. In ad-
dition, Fig. 6 shows smoothed versions of each time
series, which are less affected by REMOs interan-
nual variability.

A common feature for all time series is a pro-
nounced tendency towards earlier flowering dates
until 2100 due to prescribed forcing. Also, no matter
which regression is considered, the trend is stronger
under RCP 8.5 than RCP 4.5. The segregation of the
two scenarios becomes more obvious during the
second half of the 21th century in accordance with
the development of greenhouse gas concentrations.
Additionally, the DOY time series for a scenario
show very strong correlations between the three
types of regression (correlation coefficients are at
least 0.95), so short term fluctuations in the simu-
lated climate result in homogeneous phenological
responses as well. While these overall tendencies
are identical for all regression types, the estimated
change in DOY is of considerable range. OLS ap-
pears to be the most sensitive. During the last 30
years of the 21th century the DOY is projected to
appear on average 14.8 (7.8) days earlier than dur-
ing the reference period under the RCP 8.5 (RCP 4.5)
scenatio. It should be noted, however, that for LAD
the changes are only marginally smaller. RFO on the
other hand is obviously less affected by the forcing.

Here, the changes in the DOY are only -7.4 (-4.5)
days under RCP 8.5 (RCP4.5) by the end of the 21
century. Thus, the ratio of the changes per scenario
is well comparable to the one for OLS and LAD.
Also these changes, albeit smaller than for the other
regressions, are outside the estimated range of natu-
ral variability, since the standard deviation of RFO
is clearly smaller than those of OLS and LAD. Also,
as a response to the strong forcing of the RCP 8.5
scenario, RFO’s standard deviation reduces signifi-
cantly, while there are no significant changes in the
variability for OLS and LAD.

In Fig. 7, the spatial pattern of the changes
in DOY until the end of the 21th century are dis-
played. Of course the overall picture is consistent
with the results shown in Fig. 6. In general, for OLS
and LAD the local changes of the DOY are a func-
tion of the applied forcing and statistical model.
Hence, deviations from a spatial mean response for
one gridbox tend to be of the same sign for RCP 4.5
and RCP 8.5. For all combinations of these two fac-
tors, the mountainous areas appear to be subject to
the most pronounced changes in DOY. The excep-
tions from this rule (notably in the southern part
of Bavaria but north of the Alps) are most likely
due to lakes situated in these gridbox. The differ-
ences between OLS and LAD as displayed in Fig. 7
are more or less negligible, and in general a conse-
quence of the overall slightly stronger response of
OLS. The changes in DOY for RFO are homogene-
ously smaller than for the other statistical models.
Furthermore, especially for RCP 4.5, there occurs
stronger scattering of the deviations from the spa-
tial mean change, which might be due to the greater
influence of natural variability in comparison to
the forcing. RCP4.5-RFO is also the only combi-
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nation of forcing and statistical model for which a  interpretation of the spatial pattern of RFO based
t-test doesn’t indicate significant changes in mean DOY changes is less straightforward and physically
DOY with p < 0.01 for a number (about 10 %) of  plausible than for the parametric models. Note that
gridboxes. Thus, for RCP 4.5-RFO, a dot indicates there is no focus on the mountainous areas. This
significant changes in the DOY in Fig. 7 while we probably rather unrealistic result is a consequence
don’t use dots in the other panels. Altogether the of the RFO’s estimates restricted range.
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Fig. 7: Changes in DOY from 1961-1990 to 2071-2100 as simulated by the statistical-dynamical model. All changes are
significant on the 1% level except for gridboxes in RCP4.5-RFO that are not marked by dot.

3.5 Effects of sample selection

Tab. 1 summarizes the effects of using more re-
strictive conditions for the selection of the data used
for model fitting. We show results from the out-of-
the-box regressions, analogous to those depicted in
Fig. 3. The gain of restricting the analysis to stations
for which at least 30 years of data are available is mi-
nor compared to the one that arises from limiting it
to phenological stations that are within 100 m eleva-
tion difference to their next-neighbor meteorological
station. When 4 predictors are considered, the model
quality overwhelmingly declines. The smallest data
set — containing only one third of the originally used
stations — shows the highest values for R*. For RMSE
Tab. 1 indicates overall best results when 84 stations
are taken into account. Note, that all estimates are
inside the ranges of uncertainty depicted in Fig.4.

Also, the pairwise correlations of the predictions are
at least 0.95.

More important in terms of this study are effects
that might occur due to different mean DOYs used as
reference for REMO. Altogether, these are very mi-
nor. All possible versions of Fig. 6 are virtually iden-
tical. Concerning the regional change in DOY, there
are essentially no effects under RCP 4.5 for OLS and
LAD. For RCP 8.5, we find somewhat stronger ef-
fects when at least 30 years of data are required. For
Bavaria’s south-east and north-west we find differ-
ences up to 4 days, indicating that we might locally
underestimate the trend in DOY as a consequence of
calculating the mean DOY based on not enough ob-
servations. However, less than 4 % of the gridboxes
show absolute changes of more than two days. For
RFO regional change in DOY becomes even more
homogeneous by excluding stations, but qualitative
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Tab. 1: Measures of model quality for all three regressions with 13 (4) predictors restricting the sample to phenological
stations within a vertical difference of 100 m of their next-neighbor meteorological station (first row), for which at least 30
years of data are available (second row), or both. The first (second) column indicates the number of stations (obsetvations).

R%in % RMSE (days)
stations sample OLS LAD RFO OLS LAD RFO
84 2292 57.2 (53.8) 57.1 (53.7) 61.1 (58.0) 8.3 (8.6) 8.3 (8.7) 7.9 (8.2)
37 1396 55.0 (50.9) 54.8 (50.9) 59.3 (55.3) 8.9 (9.3) 9.0 9.3) 8.5 (8.9)
31 1172 59.3 (53.9) 59.1 (53.9) 62.8 (58.4) 8.3 (8.8) 8.3 (8.8) 7.9 (8.4)

and quantitative effects are neglectable (less than
3% of the gridboxes show changes of more than
one day). Here, there are no apparent differences be-
tween RCP 4.5 and RCP 8.5.

4 Discussion

Given the overall results we conclude that our
models succeed in their task to establish a robust sta-
tistical link between local climate conditions and the
DOY of Forsythias flowering. As we are not aiming
to predict the absolute DOY but rather model its var-
iation, our results are ready to use along with modern
high-quality climate simulations. We find a strong,
overall tendency towards earlier flowering mainly in
accordance with the effects of rising temperatures
during the 21th century. As a consequence, the risk
of late frost events should increase. Considering
Forsythia, the economic effects won’t be of much rel-
evance. However, it is highly likely that other plants,
including field crops and fruit trees, will respond to
climate change in a similar way and hence become
more vulnerable to frost damages (e.g. CHMIELEWSKI
et al. 2004; RICHARDSON et al. 2012).

Concerning the predictor selection, our boot-
strap results indicate that the reduction to 4 predic-
tors didn’t affect the outcome of our study substan-
tially. The partial-regression coefficients indicate
that early occurrences of blossoming are typically
associated with the positive phase of the North
Atlantic Oscillation (NAO), which is known to affect
phenophases all over Europe (CHEMIELEWSKI and
RoTzER 2001). In the study area, the NAO strongly
affects temperature and wind but has minor effects
on precipitation (HURRELL 1995). Of course, all of
these affect snow depth, but the latter is more of a lo-
cal aspect. However, our set of predictors might lack
additional climatic information that may become
more important under global warming conditions,
such as the plants need for frosts before spring (e.g.

CHUINE et al. 1999; CHUINE et al. 2016). In terms of
the spatial pattern of changes in the DOY it should
be considered that for mountainous areas not much
observational data is available. However, the com-
bined effects of changes in mean temperature and
snow depth taken into account, the stronger signal in
the DOY in these regions seems plausible.

For climate change studies, our approach is a
useful complement or even alternative to highly spe-
cialized processed-based phenological models, espe-
cially considering the results of the cross-validating
bootstrap that is useful for uncertainty assessment
(RICHARDSON et al 2013). Another advantage is that
the effects of errors in the phenological observations
(LARCHER 2006) are reduced simply due to the large
number of observations available and spread over a
large area. It is capable to deal with relatively short
time series and heterogeneous terrain, as the uncer-
tainty induced by these issues clearly takes a back
seat compared to the one associated with greenhouse
gas forcing.

As a major methodological question, we were
interested in the comparison of the three different
regressions. Given the results for LAD and OLS, it
seems that we could have restricted our analysis to
one of these as the results appear to be virtual identi-
cal while RFO results show notable differences to the
parametric regressions. However, given the scope of
this study, we elected to show the comparable results
for all regressions. While, our data didn’t demand for
a more robust approach than OLS, our results show
that LAD is an alternative to OLS even if it is not
required by the data. It could be argued that the spu-
rious data (Fig. 4, Fig. 5) should have been excluded
from the analysis. However, we didn’t want to do so
since we didn’t want to make such a stringent prior
assumption. We also believe that the finding that all
three types of regression fail in a similar way is an
interesting aspect of our study: none, including the
RFO, can deal with all possible structures of vari-
ation in the data. Nonetheless, RFO was found su-
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perior over parametric regression in different fields
(e.g. SVETNIK et al 2003; OLIVEIRA et al 2012) and we
also found that it captured some minor climatic ef-
fects better. Our results, however, demonstrate that
RFO, simply due to its definition, cannot respond to
an appropriate extent to the applied forcing, but is
limited to the observed range of the dependent vari-
able. It is stuck in the extreme values observed in the
past, resulting also in a statistically significant reduc-
tion of variance during the 2071-2100 period. Hence,
its use in statistical-dynamical approaches should be
considered with great care. Especially the spatial pat-
terns of changes in the DOY simulated by OLS and
LAD are considerably more in line with theoretical
and empirical findings (e.g. RICHARDSON et al. 2013)
than those by RFO. Further, partial-regression co-
efficients allow for a relatively straightforward in-
terpretation of the statistical model. RFO measures
such as variable importance (see BREIMAN 2001) are
hereby less useful. If a relatively small number of pre-
dictors that all affect the predictand is considered —a
situation commonly regarded desirable — the results
barley differ for each variable. Also, neither qualita-
tive nor quantitative aspects of the relationships can
be assessed directly. Regardless, parametric models
might lose functionality as well when their predic-
tors are outside the range of the observations used to
estimate the regression coefficients. And the contin-
uous advancement of flowering dates with increasing
temperature is, of course, even physically impossible
(e.g. CHUINE et al 1999). Considering all results from
the present study, however, parametric regression
seems more useful for when it comes to analyzing
the statistical model to time periods far beyond the
one used for training the model.

5 Conclusions

All three types of regression were capable of de-
tecting and modeling a robust statistical relationship
between climate and the day of Forsythia suspensa flow-
ering using 4 or 13 predictors and explaining well
over 50 % of total variance. The best model fits were
achieved by the RFO for both sets of predictors. In
terms of dynamical-statistical modeling, however, it
is less able to respond to future climate change than
OLS and LAD, damping the simulated signal. Rising
temperatures are the main driver of the advancement
of the DOY. While the overall tendencies of the sta-
tistical-dynamical models are plausible, it would be a
useful alternative to have powerful dynamical veg-
etation modeling included in climate models.
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