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Summary: The assessment of  present-day and future climate change is of  crucial socio-economic and ecological impor-
tance but, at the same time, subject to a variety of  uncertainty factors that are partly inherent to the climate system. This 
implies that a statement about the Earth’s future climate is definitely a probabilistic one. From a scientific point of  view, 
probabilistic statements require the knowledge of  the probability density function (PDF) of  the underlying process. In this 
paper, we expose what we already know of  the characteristics of  such PDFs of  climate change from coordinated climate 
modelling initiatives and what probabilistic statements can be derived from the quantification and evaluation of  climate 
change in a regional and seasonal context. The first aspect addresses the changing occurrence of  heat events with a relatively 
long return period in past climate. It turns out that particularly warm years, which only occurred once every 40 years in the 
past, will become typical events by the end of  the 21st century. Thus, climate change can be perceived as a change in the prob-
ability of  specific events. The second issue deals with the distinctness of  past and future climates in the light of  uncertainty. 
We show that this distinctness increases towards the end of  our century and with the amount of  greenhouse gas emissions. 
However, the overlapping probability of  present-day and future PDFs still ranges between 10 and 30% for temperature and 
even beyond 90% for precipitation in some regions of  the globe. The third problem is dedicated to so-called probabilistic 
climate predictions in the form of  overshooting and undershooting probabilities given various thresholds of  climate change. 
While for temperature, the range of  probable future changes is narrow and the sign is unambiguous, the uncertainty range 
of  precipitation changes is often larger than the mean signal. Overall, probabilistic assessments in climate change research 
allow for the quantification of  uncertainty and, hence, provide valuable information for decision processes.

Zusammenfassung: Die Abschätzung von vergangenen und zukünftigen Klimaänderungen ist einerseits von großer sozio-
ökonomischer und ökologischer Bedeutung, unterliegt andererseits aber vielfältigen Unsicherheitsfaktoren, die zum Teil 
systemimmanent sind. Dies bedingt, dass Aussagen über das zukünftige Klima der Erde unvermeidbar von probabilistischer 
Natur sind. Aus wissenschaftlicher Sicht erfordern probabilistische Aussagen die Kenntnis der Wahrscheinlichkeitsdichte 
(PDF) des zugrundeliegenden Prozesses. In diesem Artikel legen wir dar, was wir bereits über die Struktur solcher PDFs des 
Klimawandels aus koordinierten Klimamodellierungsinitiativen wissen und welche probabilistischen Aussagen sich daraus im 
Hinblick auf  die Quantifizierung und Bewertung des Klimawandels im regionalen und saisonalen Kontext ableiten lassen. Die 
erste Fragestellung befasst sich mit der veränderten Eintrittswahrscheinlichkeit warmer Jahre, die in der Vergangenheit eine 
relativ lange Wiederkehrzeit hatten. Es stellt sich heraus, dass besonders warme Jahre, die früher nur alle 40 Jahre auftraten, 
bis zum Ende des 21. Jahrhunderts den Normalfall darstellen. Klimawandel wird also wahrnehmbar sein als eine veränderte 
Wahrscheinlichkeit von bestimmten Ereignissen. Der zweite Aspekt bezieht sich auf  die Unterscheidbarkeit zukünftiger 
und vergangener Klimazustände vor dem Hintergrund von Unsicherheit. Wir zeigen auf, dass sich diese Unterscheidbarkeit 
mit der Zeit und mit emissionsintensiveren Szenarien erhöht. Dennoch liegt die Fehlklassifikationswahrscheinlichkeit bei 
der Temperatur noch zwischen 10 und 30% und beim Niederschlag sogar in einigen Regionen jenseits von 90%. Die dritte 
Problemstellung widmet sich den so genannten probabilistischen Klimavorhersagen in Form von Über- und Unterschrei-
tungswahrscheinlichkeiten bestimmter Schwellwerte des Klimawandels. Während der Bereich wahrscheinlicher zukünftiger 
Temperaturänderungen eher schmal und die Vorzeichen eindeutig sind, ist der Unsicherheitsbereich von Niederschlagsände-
rungen häufig breiter als das mittlere Signal. Insgesamt ermöglichen probabilistische Abschätzungen in der Klimaänderungs-
forschung die Quantifizierung von Unsicherheiten und geben wertvolle Anhaltspunkte für Entscheidungsprozesse.

Keywords: Climate change, probabilistic assessment, global climate models, uncertainty, regional temperature and precipita-
tion

1 Introduction

There is an unequivocal consensus about the fact 
that human activity affects the Earth’s climate to a 
considerable extent in the climatological commu-

nity and beyond (Hansen et al. 2006; IPCC 2007a). 
Although some media and lobbyists still cast doubt 
on this phenomenon most policymakers, planners 
and laymen are convinced that climate mitigation 
and adaptation will be one of the great societal 
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challenges of the 21st century (Hansen et al. 2006; 
iPCC 2007b, c). To cope with the unavoidable part 
of future global warming, reliable estimates of the 
regional patterns and amplitudes of climate changes 
are urgently required. The most reliable instrument 
to throw light on the future perspective of climate 
is the use of sophisticated climate models (MurPHy 
et al. 2004), in particular general circulation models 
(GCMs) preferably embedded in so-called earth sys-
tem models that account for a variety of processes 
and interactions in the climate system (taylor et al. 
2012). However, climate models still have considera-
ble deficiencies and differ in terms of their projected 
climate changes, especially at the regional scale. This 
is also the case for higher-resolution regional climate 
models (e.g., PaetH et al. 2010), although they pro-
vide some added value in shaping the regional fin-
gerprint of temperature and precipitation changes 
(PaetH and Mannig 2013). 

This discrepancy between the claim for precise 
predictions on the one hand and uncertain model re-
sults on the other hand is typical for scientific issues 
dealing with complex systems. 

In the climate context, uncertainties arise from 
the approximations and omissions required when 
representing real-world processes in climate mod-
els. This may partly be overcome by means of model 
improvements and increasing computer resources. 
Uncertainties also relate to multi-scale internal varia-
bility and inaccurate initial conditions which are more 
intrinsic problems of the climate system (PalMer and 
anderson 1994; stott and kettleborougH 2002). 
In addition, observational data are also subject to in-
accuracies and internal noise related to natural vari-
ability (broHan et al. 2006; Hunt 2011). This implies 
that climate impact research and decision makers in 
adaptation and mitigation processes also have to 
cope with these uncertainties. This is not necessar-
ily a dilemma because so-called probabilistic climate 
predictions that are based on the uncertainty range 
of the prediction tools, i.e., climate models, provide 
valuable information for decision making (räisänen 
and PalMer 2001).

In this study, we expose why and how the cli-
mate change issue is inevitably tied to probabilistic 
assessments. Basically, this knowledge is not novel 
in the climatological community. However, after re-
viewing the current state of knowledge in terms of 
probabilistic climate change aspects, we provide a 
novel systematic and quantitative multilayer analysis 
based on a large state-of-the-art multi-model ensem-
ble of global climate model experiments. In detail, 
three perspectives of defining climate change in the 

probability space are presented. The main goal is to 
demonstrate how climate impact research can profit 
from probabilistic climate predictions which is tan-
tamount to a quantification – not yet reduction – of 
uncertainty. Finally, we discuss how uncertainties 
from present-day climate model projections may be 
decreased – or should even become larger in order to 
account for all possible pathways of future climate 
(cf. Curry 2011). The following section contours the 
theoretical background and the resulting hypotheses 
which underlie the three approaches of model data 
analysis described in section 4. The data sets and sta-
tistical methods considered are presented in section 
3. Results are discussed in section 5 with respect to 
possible future treatments of uncertainty in climate 
change projections.  

2 Theoretical background and hypotheses

The sources of uncertainty in the assessment 
of anthropogenic climate change are manifold and 
partly different for present-day and future periods 
(Fig. 1). From our theoretical understanding of the 
climate system, in particular the radiation budget 
and energy balance, radiative forcing by greenhouse 
gases (GHGs) and aerosols should noticeably affect 
the observed near-surface temperature over the 20th 
century (Fig. 1, left). In fact, temperature variability 
is also influenced by natural drivers of the Earth’s cli-
mate, especially solar irradiation and volcanic erup-
tions, and internal noise arising from the interactions 
and feedbacks between the system components, for 
instance atmosphere–ocean–sea ice or atmosphere–
vegetation–soil moisture (Hunt 2011; ryPdal 2012). 
Thus, anthropogenic forcing competes against non-
anthropogenic factors, impeding the detection of 
man-made climate change on the basis of obser-
vational data (stott et al. 2000; sCHönwiese et al. 
2010). In addition, it must be taken into account that 
observational data are subject to gaps, inhomoge-
neity and measurement errors, amounting to up to 
0.2  °C even in terms of the global mean temperature 
(Folland et al. 2001; Hogan 2005; broHan et al. 
2006).

In future climate model projections, even more 
uncertainty factors exist (Fig. 1, right). First, future 
climate will also be affected by solar variability and 
volcanic activity (stott and kettleborougH 2002; 
Jones et al. 2012). While volcanic eruptions cannot 
be predicted several years or decades ahead, there 
are some attempts to specify future solar irradiation 
changes in climate models (lean and rind 2009). 
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Internal variability is included in climate models, es-
pecially in Earth system models (taylor et al. 2012), 
but represents a noise component in climate projec-
tions which, like in the observations, superimposes 
the impact of radiative forcing and, hence, reduces 
the predictability of climate. Another source of un-
certainty is given by the scenarios of future human 
activity. GHG and aerosol emissions in the 21st cen-
tury are a function of the demographic, socio-eco-
nomic, technological and political development on 
Earth and highly diverse by nature (nakiCenoviC 
and swart 2000; sCHenk and lensink 2007). Some 
aspects of human interference with climate are still 
not accounted for in most climate model experi-
ments, i.e., the indirect effects of aerosols (PaetH and 
FeiCHter 2006) and the role of land-cover changes 
(Pielke et al. 2002; FeddeMa et al. 2005; PaetH et 
al. 2009). Climate model projections are also un-
certain because state-of-the-art climate models still 
have important deficiencies, e.g., missing feedbacks 
and unresolved processes due to coarse resolution 
(PalMer and anderson 1994). The latter has led 
to a number of parameterizations that suffer from 
a lack of empirical evidence and basic understand-
ing (PalMer and williaMs 2008). In addition, each 
model simulation requires accurate initial conditions 
that are not given, especially for starting times in the 
period of early meteorological measurements in the 
mid-19th century (PalMer and williaMs 2008). The 
initial conditions affect the phasing – not the am-

plitude – of internal variability and, thus, contrib-
ute to this uncertainty factor. Hawkins and sutton 
(2011) have shown that the spread over different 
climate model projections is determined by shorter-
term internal variability over the first decades of the 
simulations, while different model parameterizations 
predominate towards the end of the 21st century. 
Note that the phasing of shorter-term internal fluc-
tuations depends on the initial conditions, whereas 
the longer-term changes relate to the external forc-
ings, e.g., increasing GHG concentrations (PalMer 
and williaMs 2008). Finally, the prediction of future 
climate conditions also suffers from the uncertain 
climate sensitivity of the Earth (roe and arMour 
2011). Climate sensitivity is defined as the global-
mean temperature change per doubling of the at-
mospheric CO2 concentration (sexton and MurPHy 
2012). From climate models the sensitivity has been 
estimated to be around 3 °C per 2xCO2 with a range 
from 2.1 °C to 4.7 °C in most recent climate model 
experiments (andrews et al. 2012). It mostly depends 
on feedbacks considered in the simulated climate 
system but also relates to the parameterizations of 
sub-grid scale processes and, to a lower extent, to the 
future GHG emission paths (roe and baker 2007; 
wang et al. 2012; ZiCkFeld et al. 2012). loveJoy and 
sCHertZer (2012) have pointed to the difficulty of 
deriving climate sensitivity from given meteorologi-
cal measurements or proxy data. However, climate 
sensitivity is a crucial factor when determining the 
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Fig. 1: Contributions to an observed present-day (left) and simulated future (right) temperature development at a given 
location: anthropogenic driving factors (blue boxes), natural driving factors (yellow boxes), uncertainties due to internal 
variability arising from climate system interactions (green boxes) and uncertainties due to lack of  knowledge (red boxes) 
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amount of GHG emissions reduction necessary to 
comply with a maximum warming rate of 2 °C by 
2100 (Hansen et al. 2006).

It may be argued that uncertainties related to 
parameterizations, resolution and climate sensitivity 
may once be overcome when computer resources al-
low for a ‘perfect’ climate model. Setting the resolu-
tion of such a perfect model to 0.001 μm which is 
about the size of the smallest aerosols (PaetH and 
FeiCHter 2006), this climate system would be char-
acterized by about 1049 degrees of freedom, requiring 
1039 W to store a single time step on a common data 
medium. Using the entire energy of our solar system, 
which is in the order of 1049 J, we could store just 
300 years of simulated climate at a one-second time 
step. It is obvious that such a perfect model cannot 
be realized and, even if it could be realized, the pre-
diction would be imperfect because the initial condi-
tions are still inaccurate. This implies that climate 
change research will always have to cope with un-
certainties. In practice, climatologists assess the un-
certainty range of climate model projections by re-
alizing several model simulations with plausible but 
different initial conditions, different resolutions and 
different parameterization schemes. This has led to 
the coordinated multi-model ensembles of coupled 
GCM simulations (MeeHl et al. 2007; taylor et al. 
2012). Based on this, numerous studies have identi-
fied climate change signals against the background 
of model uncertainty and varied initial conditions: 
For temperature and precipitation (e.g., PaetH and 
Hense 2002), for monsoons and El Niño-Southern 
Oscillation (e.g., PaetH et al. 2008a) as well as for 
extra-tropical circulation modes (e.g., PaetH and 
Pollinger 2010).

The scientific assessment of the probability of a 
specific event or groups of events is based on so-
called probability density functions (PDFs). A PDF 
is a mathematical function defined over the feature 
space of a given random process (wilks 2006). The 
integral over this function is always 1, corresponding 
to a chance of 100 % that a specific event is an ele-
ment of the feature space. For instance, assuming a 
normal distribution as one prominent representative 
of such PDFs there is a chance of 100 % that the value 
of a specific event ranges between minus and plus in-
finity – at first sight a trivial statement. Accordingly, 
subareas under this function denote the probability 
of a specific range of events, e.g., the probability that 
an event occurs above or below a given threshold or 
between two given thresholds. Once the parameters 
of a PDF are estimated from a random sample, any 
overshooting, undershooting or interval probability 

can be computed for given thresholds or, vice versa, 
the thresholds – so-called quantiles – can be deter-
mined for any given probability. Both approaches are 
widely used in test statistics (wilks 2006).

Assuming that climate model results represent 
random samples from the population of future hu-
man-induced climates, PDFs can be estimated based 
on the multi-model ensemble data (IPCC 2007a). In 
this case, the PDFs span various amplitudes of cli-
mate change as deduced from different climate mod-
el runs with different parameterizations and initial 
conditions. Thus, climate models tell us something 
about the structure of the probability space associ-
ated with uncertain climate change. The idealized 
view in figure 2 demonstrates how temperature at a 
given location shifts towards higher values depend-
ing on the SRES emissions scenarios (nakiCenoviC 
and swart 2000). Each scenario is represented by 
temperature data simulated by various climate mod-
els with different initial conditions, resolution, pa-
rameterizations, climate sensitivity and internal vari-
ability (Fig. 2, lined PDFs). While all model simula-
tions are assigned equal probabilities, the simulated 
temperatures are characterized by more and less fre-
quent values, implying that mean and extreme future 
temperature changes can be determined for a given 
sample. Assuming that each climate model is an ap-
proximation of the real climate system plus random 
error, the PDFs for the mean temperature in future 
climate are slimming (Fig. 2, shaded PDFs) because, 
according to classical test statistics, the standard er-
ror of the mean scales with the number of ensemble 
members (sanderson and knutti 2012). An indica-
tion of this assumption is that the multi-model en-
semble mean is often closer to the observations than 
the best individual model experiment (e.g., PaetH et 
al. 2010). However, a drawback is that this assump-
tion implies that current climate model simulations 
are independent of each other in a strict sense, which 
may not be fully given (annan and Hargreaves 
2010).

Once the probability distributions are estimated 
on the basis of climate model data, there are various 
probabilistic assessments that need to be applied to 
evaluate and quantify climate change in the light of 
model uncertainty (Fig. 3). First, the insignificance 
of climate changes can be expressed as the extent 
that the present-day and future climate PDFs over-
lap (top panel). In contrast, a change is evident, if 
the PDFs can clearly be separated from each other. 
Second, the shift of PDFs from present-day to future 
climate implies a changing frequency of a given event 
(middle panel), e.g., an extreme event beyond a cer-
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tain threshold (Hennessy et al. 1997; IPCC 2007a). 
Only for Europe, a number of studies have focused 
on changing return times of extreme precipitation 
(PalMer and räisänen 2002; CHristensen and 
CHristensen 2003; Fowler and kilsby 2003; PaetH 
and Hense 2005) and heat waves (kyselý 2010; 
nikulin et al. 2011). They agree that the frequency of 
heat and heavy rain events will increase in the course 
of global warming. Third, given a PDF of possible 
future climate states, over- and undershooting prob-
abilities can be determined for various thresholds of 
climate change (bottom panel). In this schematic ex-
ample, the probability is 5 % that the warming rate 
at a given location exceeds 4.5 °C. This means that 
there is a 5 % chance to draw a climate model simula-
tion with warming larger than 4.5 °C out of the pop-
ulation of possible future climates. This leads to the 
approach of probabilistic prediction (rougier 2007; 
sexton et al. 2012). While probabilistic predictions 
allow for a quantification but no reduction of uncer-
tainty (Collins et al. 2006), they provide important 
information for decision processes in climate change 
adaptation. Some decisions, for instance in insurance 
industries, are traditionally taken in a probabilistic 
context (Murnane 2004; dlugoleCki 2008).

Based on the conceptual model from figure 3, 
we investigate a set of hypotheses that are often stat-
ed in the context of anthropogenic climate change. 
We proceed in a systematic way by accounting for 
different regions across the globe in the framework 
of a state-of-the-art multi-model ensemble of climate 
change experiments:

1. Warm events with long return times under present-
day climate conditions will become typical events 
by the end of the 21st century.

2. PDFs of current and future regional climate are 
less overlapping for enhanced than for mitigated 
emission scenario and less overlapping for tem-
perature than for precipitation.

3. Probabilistic predictions of regional temperature 
and precipitation reveal a higher level of uncer-
tainty for precipitation than for temperature, pos-
sibly not only in terms of the amplitude but also 
of the sign.

While these hypotheses appear to be well-established 
because they sound plausible in the light of global 
warming, they still require a systematic and quantita-
tive assessment on the basis of state-of-the-art cli-
mate model simulations (cf. IPCC 2007a; watterson 
2008). The following section describes how these 
hypotheses will be tested in terms of model data and 
statistical methods.

3 Data and methods

In this study, the probabilistic assessment of 
regional climate changes is based on the Coupled 
Model Intercomparison version 3 (CMIP3) data set 
(MeeHl et al. 2007). This multi-model ensemble is 
composed of 23 ocean-atmosphere coupled climate 
models at horizontal resolutions between 120 and 
500 km (Tab. 1). A total of 207 centennial runs is 
available for the 20th century and the SRES emis-
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Fig.  2: Idealized structure of  the PDFs of  observed present-day and simulated future temperature at a given location, refer-
ring to the whole sample of  given data (lines) and to the respective mean values of  the samples (shaded) for three different 
SRES emissions scenarios
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sions scenarios B1, A1B and A2 (nakiCenoviC 
and swart 2000). The CMIP3 data set has been 
widely used for climatological applications and 
represents state-of-the-art of climate modelling 
until the CMIP5 project is accomplished during 
2013 (taylor et al. 2012). Numerous studies have 
dealt with the validation of the individual ensemble 
members and the ensemble mean and have con-
cluded that CMIP3 is a useful tool to study climate 
change down to the scale of continents and larger 
regions (IPCC 2007a). Note that the PDFs of past 
climate shown in this study are based on climate 
model simulations, which may have some bias with 
respect to observations. This is admissible because 
we stress the future changes within each model 
simulation. 

We considered monthly temperature averaged to 
seasonal and annual means as well as monthly pre-
cipitation added up to seasonal and annual sums for 
the analysis. For comparison and combination, all 
data sets are interpolated to a common 3° x 3° reso-
lution. The probabilistic predictions and the overlap-
ping of PDFs are investigated at the level of regional 
means. According to the definition of hot spot re-
gions of climate change (giorgi 2006; diFFenbaugH 
and giorgi 2012), twelve regions were selected of 
which six are shown in this study as representatives 
of different climate zones. The Mediterranean Basin 
and Central America are assumed to have the high-
est signal-to-noise ratio with respect to 21st century 
temperature and precipitation changes (giorgi 2006; 
diFFenbaugH and giorgi 2012). Greenland is im-
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Fig. 3: Probabilistic assessments arising from the comparison between PDFs of  present-day (green) and future (yellow) 
temperature under a given scenario. Shaded areas represent a measure of  probability for a statistically insignificant change 
in the variable or process which is described by these PDFs (top panel), for a changing occurrence of  a given event (middle 
panel) and for the under- or overshooting of  a given threshold of  climate change (bottom panel). 
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portant in terms of its potential contribution to fu-
ture sea-level rise (Hansen et al. 2006). The Tibetan 
Plateau plays a major role in the Asian monsoon sys-
tem (PaetH et al. 2008a). Southern Africa is particu-
larly embedded in tropical teleconnections and inter-
actions with the surrounding oceans (IPCC 2007a). 
Germany was chosen because it is characterized by a 
high density of population and infrastructure.

By nature, probabilistic issues are sensitive to the 
assumed statistical model of the underlying process. 
According to IPCC (2007a), we use the normal dis-
tribution as statistical approach for the model-based 
PDFs of climate change, implying the assumptions 
that the spread over climate models is symmetric 
around the ensemble mean and each simulation ap-
proximates the real system plus a random error (cf. 
sanderson and knutti 2012). The normal distribu-
tion is given by

where μ is the expectation and σ the dispersion of 
the distribution (wilks 2006). For μ and σ the mean 
and empirical standard deviation, respectively, over 
the CMIP3 ensemble members are taken as unbiased 
estimators. To evaluate whether this statistical fit is 
appropriate, a Kolmogorov-Smirnov (KS) test was 
applied (wilks 2006). The error level is set to 10 % 
in order to facilitate the rejection of the null hypoth-
esis. As the latter says that the fit is appropriate, this 
makes the test more conservative.

Changing frequencies of specific events (hypoth-
esis 1) and over- and undershooting probabilities for 
given thresholds (hypothesis 3) are determined by 
integration of the normally distributed PDFs. The 

∞<<∞−⋅=
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Model Horizontal 
resolution

20C B1 A1B A2

BCCR ~300 km 1 1 1 1
CCSM3 ~150 km 7 9 7 4
CGCM3 ~400 km 1 5 5 5
CGCM3.1 ~300 km 1 1 1 –
CNRM ~300 km 1 1 1 1
CSIRO3 ~200 km 3 1 1 1
CSIRO3.5 ~200 km 1 1 1 1
ECHAM5 ~200 km 4 3 4 3
ECHO-G ~400 km 5 3 3 3
FGOALS ~300 km 3 3 3 –
GFDL2 ~250 km 3 1 1 1
GFDL2.1 ~250 km 3 1 1 1
GISS-AOM ~400 km 2 2 2 –
GISS-EH ~500 km 5 – 3 –
GISS-ER ~500 km 9 1 5 –
INGV ~120 km 1 – 1 1
IPSL ~300 km 1 1 1 1
MIROC3.2H ~120 km 1 1 1 –
MIROC3.2M ~300 km 3 3 3 3
MRI ~300 km 5 5 5 5
PCM ~300 km 4 2 4 4
UKMO-C ~300 km 2 1 1 1
UKMO-G ~200 km 2 – 1 1

Total 68 46 56 37

Tab. 1: Considered global climate model simulations from the CMIP3 initiative (cf. Meehl et al. 2007) with horizontal 
resolution and available ensemble members for the 20th century (20C) and 21st century under emissions scenario B1, A1B 
and A2

(1)
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intersection of PDFs (hypothesis 2) is measured by 
the overlapping probability (OLP). Given two PDFs 
with μ1 and μ2, where μ1 ≤ μ2, and intersection S, the 
OLP is calculated by integrating the left PDF from 
S to ∞ and the right PDF from -∞ to S and adding 
both integrals (see grey shading in the top panel of 
figure 3; wilks 2006; PaetH et al. 2008b). 

4 Probabilistic assessments

4.1 Changing probabilities of  warm events (hy-
pothesis 1)

With respect to the changing frequency of spe-
cific events in a GHG-induced climate, we focus 
on annual and seasonal temperature anomalies be-
cause distinct changes are to be expected (e.g., IPCC 
2007a; kyselý 2010; nikulin et al. 2011). Note that 
the change in the frequency of warm events is also 
a function of the considered time scale: For month-
ly and, in particular, daily values, the variability is 
higher and, hence, the increase in probability is pre-

sumably smaller. As a threshold for a warm event, 
we define the warm annual or seasonal temperature 
extreme at every model grid box that had a statisti-
cal return time of 40 years during the period 1875-
1990. This is equivalent to the upper threshold of the 
95 % confidence interval around the mean value over 
the same time interval. The return value itself is not 
displayed for the period 1875–1990. It is a function 
of latitude, altitude, continentality, etc., and basi-
cally corresponds to the global distribution of mean 
temperature (cf. PaetH and Hense 2005). The tem-
perature threshold in every grid box is retained and 
applied to future periods under various emissions 
scenarios. 

Figure 4 depicts the relative frequency of annual 
temperature values above the threshold during 25-
year time slices into the 21st century under the A1B 
emissions scenario. Until 2025, the return time of 
warm events will hardly change over mid-latitude 
oceans, but its occurrence may increase to more than 
70 % in some tropical regions. In the global mean, the 
relative frequency rises to around 40 %. This means 
that a particularly warm year that occurred once in 
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40 years during the reference period 1875–1990, may 
be observed in 16 out of 40 years in the near future. 
Towards the end of the 21st century, this change will 
be even more dramatic: Extremely warm years are 
predicted in more than 90 % of the years to come 
and, hence, these become typical events (cf. kyselý 
2010). This is how climate change will be perceived: 
As an increasing frequency of weather situations that 
favour warm temperature anomalies. Some excep-
tions with low sensitivity are found over the mid-lat-
itude oceans. This is in agreement with other studies 
and probably related to a regional cooling effect by 
an attenuated North Atlantic thermohaline circula-
tion (cf. IPCC 2007a). In addition, enhanced cloudi-
ness due to more intense extra-tropical cyclogenesis 
may play a role as dampening mechanism (PaetH 
and Pollinger 2010).

The tendency towards more frequent extremely 
warm years is also a function of the future GHG 
emissions (Fig. 5). The general pattern is virtually 
the same under the B1, A1B and A2 scenarios. The 
most striking fact is that under the mitigation sce-
nario (B1), the relative frequency of warm events will 
also be beyond 90 % by the end of the 21st century 
in most regions of the globe. This implies that re-
gardless of the future emissions path, warm years are 
saturating towards 2100, becoming normal instead 
of extreme events. Some more differences among 
the scenarios are found over the North Pacific and 
parts of Eurasia.

A more differentiated picture is drawn for sea-
sonal temperature extremes (Fig. 6). The probabil-
ity of extremely warm seasons increases more in the 
low and high latitudes whereas the mid-latitudes 
may respond to a lesser extent. Over the Northern 
Hemisphere oceans, the increase is lower during the 
cold season ( JFM), supporting the hypothesis that 
reduced thermohaline circulation and/or enhanced 
cyclogenesis plays a role. Around the Antarctic this 
explanation is less apparent but still the dampen-
ing effect is most pronounced during Southern 
Hemisphere winter ( JAS).

4.2 PDFs of  past and future climate (hypoth-
eses 1-3)

Based on six regional means, figure 7 shows the 
Gaussian PDFs of annual temperature during past 
and future time slices under the A1B emissions 
scenario. The PDFs relate to means over 30 years 
from every model simulation and, hence, corre-
spond to the case of the shaded PDFs in figure 2 (cf. 

sanderson and knutti 2012). At this level, the cri-
terion of the KS test is not taken into account and all 
PDFs are drawn for illustration. The basic structure 
is alike in all regions: The PDFs shift towards a high-
er temperature mean from the early 20th to the late 
21st century. Simultaneously, the PDFs also broaden, 
except for the Tibetan Plateau, implying that the 
spread among climate model simulations increases 
with time. This is in agreement with IPCC (2007a) 
and can be explained by the fact that climate models 
with different resolved processes and climate sen-
sitivity progressively diverge with simulation time. 
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In detail, there are some remarkable differences be-
tween the regions: The PDFs are generally broader 
in higher-latitude and higher-altitude regions than 
in tropical and subtropical areas, simply because in-
ternal variability is more pronounced (cf. PaetH and 
Hense 2002). At the same time, the shift is stronger 
– around 5 °C in Greenland and Tibet versus 3 °C 
in Central America and Southern Africa. In both 
respects, the Mediterranean region and Germany as 
representatives of the mid-latitudes lie in between. 

In terms of annual precipitation, the picture is 
more diverse (Fig. 8). More abundant precipitation 
is simulated in Greenland and over the Tibetan 
Plateau, drier conditions may prevail across the 
Mediterranean Basin and Central America, hardly 
any changes are found over Germany and Southern 
Africa. Interestingly, the PDF is rather narrow for 
the last time slice over the Mediterranean region, 
indicating a certain convergence of all considered 
model runs for a drier climate (cf. CHristensen and 
CHristensen 2003; PaetH and Hense 2005; giorgi 
2006). However, all regions have one feature in com-
mon: The shift of the mean clearly stands back from 

the dispersion of the PDFs, impeding the detection 
of annual precipitation changes against the back-
ground of internal variability and model uncertainty 
(cf. PaetH and Hense 2002). 

The shift of the PDFs is also a function of the 
emissions scenario (Fig. 9). It is obvious that A1B and 
A2 scenarios are closer to each other than to the B1 
scenario (cf. IPCC 2007a). Precipitation in Southern 
Africa responds to none of the GHG scenarios. In 
some cases, the width of the PDFs is smallest for the 
A2 scenario. While this is somehow counterintuitive 
in the light of different climate sensitivities in the 
models, it could simply be due to the smaller ensem-
ble size of the A2 scenario (see Tab. 1). 

Figure 10 illustrates that temperature and, espe-
cially, precipitation changes can also be differentiat-
ed seasonally. In winter, the PDFs tend to be broader 
because internal variability is more expressed. An 
exception is Southern African rainfall where winter 
( JAS) is characterized by a dry season. In this region, 
the seasonal changes are contrary with winter drying 
and more rainfall in summer, leading to no changes 
in the annual totals (cf. Fig. 8). 
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4.3 Overlapping probabilities (hypothesis 2)

The shift of the mean is a measure of the climate 
change signal, while the width of the PDFs is an in-
dication of noise. The OLP arises from a combina-
tion of both and indicates to what extent PDFs of 
past and future climate can be distinguished from 
each other. The smaller it is, the higher the signal-
to-noise ratio of a given climate change. The OLPs 
in table 2 refer to the regional-mean PDFs of an-
nual temperature displayed in Figs. 7 and 9. Note 
that the KS test has identified all of the PDFs that 
were considered to be normally distributed. OLP is 
quite high for a low amount of GHG concentrations, 
i.e., the period 2020–2049 under B1 scenario, and 
in high-latitude and high-elevation areas. In Tibet 
it amounts to 81 %. Thus, there is a high chance to 
assign a given year to the wrong PDF, present-day 
or early 21st century under B1 scenario. Indeed, fig-

ure 7 demonstrates the substantial overlapping of 
the PDFs. Towards the late 21st century the OLP de-
creases noticeably. This particularly holds for the A2 
scenario where OLP ranges between 12 % and 35 % 
depending on the region. Again, the Mediterranean 
Basin is characterized by the clearest signal in most 
scenarios and time slices (cf. giorgi 2006).  

Concerning annual precipitation, some PDFs 
were found to be not normal, especially for the 
Tibetan Plateau, hence, they were excluded from the 
analysis. The OLPs in table 3 relate to the PDFs in 
figures 8 and 9. According to the remarkable over-
lapping of the PDFs, OLP is substantial in all regions, 
time slices and emissions scenarios. It tends to be 
lower towards the end of the 21st century and under 
the A2 scenario. The lowest value is achieved for the 
Mediterranean region where it still amounts to 56 %. 
In Germany, OLP is around 90 %, reflecting the in-
sensitivity of annual (but not seasonal) precipitation 
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to radiative forcing. In the case of Germany, it has 
to be noted that the region is smaller than the other 
ones and model uncertainty as well as internal vari-
ability increases from the global to the regional scale 
(PaetH and Mannig 2013).

4.4 Over- and undershooting probabilities (hy-
pothesis 3)

For a given change in annual temperature table 
4 lists the over- and undershooting probabilities de-
rived from the temperature PDFs in figures 7 and 
9. The information reads as follows: For example, 
the mean temperature change (ΔT) over the CMIP3 
multi-model ensemble amounts to 2.5 °C in the 
Mediterranean region under B1 emissions scenario. 
Thus, there is a 50 % chance that the real warming 
rate is higher or lower, since the PDFs are symmet-

ric. The probability that the temperature change will 
be more than 1.5 °C (ΔT-1) is 81 %; complementa-
rily, it is 19 % that the warming is below 1.5 °C. A 
much higher temperature rise of 4.5 °C (ΔT+2) still 
has a probability of 4 % but it is more likely (96 %) 
that this threshold will not be exceeded. Comparing 
these probabilistic predictions among different re-
gions and scenarios reveals that a high probability – 
typically around 67 % – is assigned to a temperature 
change ranging in the interval ΔT±1 °C which im-
plies that warming prevails everywhere, and a very 
high probability around 93 % is given to the inter-
val ΔT±2 °C. In that case, slight cooling lies in the 
confidence interval of temperature change in Central 
America and Southern Africa. An exception occurs 
in Tibet and Greenland, where temperature changes 
beyond the ΔT±2 °C thresholds are more likely be-
cause the PDFs are broader (see Fig. 7). This is also 
the reason for the somewhat higher probabilities of 
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large deviations from the ensemble-mean change 
under the A2 scenario.

In terms of annual precipitation, some over- and 
undershooting probabilities cannot be determined 
because the associated PDFs are not normally dis-
tributed (Tab. 5). The lower and upper thresholds 
of precipitation changes around the mean are set 
to -40 mm and +50 mm. These thresholds mostly 
comprise a change of sign, implying that the confi-
dence intervals include positive and negative precipi-
tation changes. And yet there is a high probability 
(~40–70 %) that these thresholds are still exceeded 
or undercut. Thus, in most regions and scenarios, 
not even the sign of the precipitation signal can be 
assessed with some certainty. In the low latitudes the 
situation is the worst. The most confident prediction 
can be made for Mediterranean precipitation with a 
probability of 53 % that the decrease of annual rain-
fall ranges between 34 mm and 124 mm.

5 Discussion

It has been shown that an adequate assessment of 
anthropogenic climate change must be a probabilis-
tic one. Three examples of evaluating the probability 
space of future climate were selected and applied to 
the CMIP3 multi-model ensemble. The first approach 
is dedicated to the changing occurrence of warm 
events that were characterized by a long return time 
before 1990. It is found that extremely warm years 
and seasons, which occurred once in 40 years during 
the reference period, will become normal years in the 
future. Thus, hypothesis 1 can be substantiated. This 
tendency is independent of the emissions scenario 
and slightly dampened over the mid-latitude ocean 
basins, possibly due to regional cooling by an attenu-
ated North Atlantic thermohaline circulation or en-
hanced cloudiness related to intensified cyclogenesis 
(cf. IPCC 2007a; PaetH and Pollinger 2010). This 
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demonstrates how we will experience climate change: 
Rare events in the past will become usual events in 
the future. This particularly holds for warm anoma-
lies (kyselý 2010). The frequency of extremely warm 
years partly increases by a factor of up to 40.

The second approach deals with the OLP as a 
measure of distinction between PDFs of past and 
future climate. It increases with the dispersion of 
the PDFs and decreases with the shift of the mean. 
Thus, it can be interpreted as an inverse signal-to-
noise indicator. The OLP is much higher for pre-
cipitation than for temperature changes because 
the PDFs of precipitation are characterized by sub-
stantial model uncertainty and internal variability. 
This implies that our second hypothesis can also be 
confirmed based on the CMIP3 model data set. By 
the end of the 21st century, the lowest OLP values 
will occur under the A2 emissions scenario for an-
nual temperature in the Mediterranean region, in 
Central America and Southern Africa, amounting 

to less than 20 %. This allows for a proper attribu-
tion of temperatures in individual years to either of 
the PDFs, present-day or future. The OLP approach 
gives support to the picture of temperature as a reli-
able and precipitation as a noisy detection variable 
(PaetH and Hense 2002; IPCC 2007a; Hawkins and 
sutton 2011).

The third approach computes over- and under-
shooting probabilities for different thresholds of fu-
ture temperature and precipitation changes. It turns 
out that the range of possible future precipitation 
changes is quite large in all considered regions. Even 
the sign of the changes is often not clear as sup-
posed by hypothesis 3. In terms of temperature, it is 
likely that the warming rate varies by no more than 
±1 °C around the mean change over all ensemble 
members. 

In summary, all three hypotheses raised in sec-
tion 2 could be confirmed. The most precise predic-
tions with the highest signal-to-noise ratio in CMIP3 
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can be made for temperature in the Mediterranean 
region, Central America and Southern Africa and 
for Mediterranean precipitation. These regions 
have been identified as hot spots of climate change 
(giorgi 2006; diFFenbaugH and giorgi 2012). It is 
obvious that such probabilistic predictions based 
on the uncertainty of climate model projections 
are relevant and impact research and adaptation 
(cf. räisänen and PalMer 2001). For instance, de-
cision makers may choose a low scenario of future 
climate change in order to save money for a spe-
cific adaptation measure. However, the probability 
is high that real climate change will be larger than 
the assumed threshold and the adaptation measure 
will prove to be insufficient. In contrast, they may 
opt for a high scenario which reduces the risk but 
enhances the costs. Economic decisions, e.g., in in-
surance industry, are typically based on uncertainty 
and arise from probabilistic assessments (Murnane 
2004; dlugoleCki 2008). Another example for a 
probabilistic issue comes from regional planning: 
Nuclear power plants in Germany have to be built 
at locations that are supposed to withstand a flood 
event with a return time of 10,000 years (eHrHardt 
and weis 2000). Applying the same safety standard 

to future climate change would lead to an upper 
threshold of temperature change that is exceeded 
with a probability of no more than 0.01 %. Note 
that under the A2 scenario, there is still a probabil-
ity of 18 % that the warming rate in Germany will be 
larger than 5.2 °C (see Tab. 4)!

While probabilistic prediction is based on a 
quantification of uncertainty (Collins et al. 2006), it 
does not achieve a reduction of uncertainty. In prin-
ciple, such a reduction would be the silver bullet be-
cause climate predictions would become more pre-
cise and adaptation and protection measures more 
targeted. It was discussed before that part of the un-
certainty is inherent to the climate system, especially 
internal variability arising from the unknown initial 
conditions. Nonetheless, improved climate model 
approaches may contribute to a lower dispersion of 
PDFs over climate model projections. Referring to 
figure 1, climate model predictions for the 21st cen-
tury would certainly profit from the inclusion of fu-
ture changes in solar irradiation (cf. lean and rind 
2009), from a more detailed assessment of feedbacks 
in the climate system as a key to climate sensitivity 
and internal climate variability (cf. roe and arMour 
2011), and from an enhanced spatial resolution so 

Region
B1 A1B A2

2020-2049 2070-2099 2020-2049 2070-2099 2020-2049 2070-2099
Mediterranean 46 27 47 18 49 12
Germany 61 39 54 23 58 20
Greenland 69 52 66 38 59 24
Tibet 81 60 68 36 81 35
Central America 57 36 49 18 58 17
Southern Africa 62 34 50 14 65 15

Tab. 2: Overlapping probability in % for annual temperature referring to different regions, future time slices and 
emissions scenarios, compared to reference period 1970-1999. Note that all considered PDFs are normally distrib-
uted according to the KS criterion

Region
B1 A1B A2

2020-2049 2070-2099 2020-2049 2070-2099 2020-2049 2070-2099
Mediterranean 89 83 86 70 79 56
Germany 90 87 96 95 92 91
Greenland 84 – 84 68 84 65
Tibet – – – – – –
Central America 97 96 98 93 96 89
Southern Africa 94 93 93 91 – –

Tab. 3: Overlapping probability in % for annual precipitation referring to different regions,  future time slices and emis-
sions scenarios, compared to reference period 1970-1999. Gaps denote PDFs that are not normally distributed according 
to the KS criterion
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that uncertainty due to model physics is reduced (cf. 
PalMer and williaMs 2008). Indeed, some studies 
reveal that the spread of temperature projections in 
some regions may be reduced by model improve-
ment whereas precipitation changes are still con-
trolled by internal variability (Hawkins and sutton; 
rowell 2012). Another option is to allow model 
simulations to learn from observational data (Piani 
et al. 2005). Observations can be used to filter those 
simulations which are closest to the real climate 

system according to specific criteria. This has been 
successfully carried out for various climate indica-
tors (Min and Hense 2006; PaetH et al. 2011; PaetH 
2012). However, the performance of a climate model 
may be best in a certain region or process but worst 
in another one, leading to the problem of assigning 
universal weights to the model runs (räisänen and 
ylHäisi 2012). In fact, weighting of the CMIP3 en-
semble members did not have a noticeable effect on 
the PDFs because all state-of-the-art climate models 

Region
B1 A1B A2

ΔT >ΔT-1 >ΔT+2 ΔT >ΔT-1 >ΔT+2 ΔT >ΔT-1 >ΔT+2

Mediter-
ranean 2.5 °C 81 % 4 % 3.3 °C 78 % 6 % 3.8 °C 78 % 7 %

Germany 2.0 °C 80 % 5 % 2.9 °C 78 % 6 % 3.2 °C 77 % 18 %

Green-
land 3.0 °C 67 % 20 % 4.1 °C 66 % 20 % 5.0 °C 69 % 16 %

Tibet 2.0 °C 71 % 15 % 3.6 °C 71 % 14 % 3.6 °C 71 % 14 %

Central
America 1.7 °C 84 % 3 % 2.6 °C 82 % 4 % 2.9 °C 79 % 6 %

Southern
Africa 1.6 °C 88 % 1 % 2.6 °C 85 % 2 % 2.8 °C 81 % 4 %

Tab. 4: Changes of annual temperature between 1970-1999 and 2070-2099 for different regions and emissions scenarios 
with the mean change in °C over all CMIP3 simulations (ΔT), the overshooting probability for threshold ΔT-1 °C and the 
overshooting probability for threshold ΔT+2 °C in %

Region
B1 A1B A2

ΔP <ΔP   
-40

>ΔP 
+50

ΔP <ΔP   
-40

>ΔP 
+50

ΔP <ΔP   
-40

>ΔP 
+50

Mediter-
ranean -39 mm 36 % 33 % -65 mm 31 % 26 % -84 mm 26 % 21 %

Germany 43 mm 39 % 36 % 15 mm 41 % 39 % 34 mm 40 % 38 %

Greenland 58 mm – – 73 mm 34 % 30 % 66 mm 28 % 23 %

Tibet 56 mm – – 58 mm – – 37 mm 38 % 35 %

Central
America -22 mm 44 % 42 % -31 mm 44 % 43 % -45 mm 45 % 44 %

Southern
Africa -12 mm 41 % 39 % 12 mm 41 % 39 % -20 mm – –

Tab. 5: Changes of annual precipitation between 1970-1999 and 2070-2099 for different regions and emissions scenarios 
with the mean change in mm over all CMIP3 simulations (ΔP), the undershooting probability for threshold ΔP-40 mm 
and the overshooting probability for threshold ΔP+50 mm in %. Gaps denote PDFs that are not normally distributed ac-
cording to the KS criterion



219H. Paeth et al.: Climate change – it’s all about probability2013

appear to be equally plausible in the light of current 
knowledge, data and computer resources (räisänen 
and ylHäisi 2012; sanderson and knutti 2012). In 
addition, it cannot be concluded from model-based 
PDFs of past climate whether the PDFs of future 
climate are under- or over-dispersive. The PDFs are 
too broad when available data are not sufficiently 
used to calibrate the models, whereas they are too 
narrow when the models’ structure is quite similar, 
not covering the data uncertainty in the model pa-
rameterizations (sanderson and knutti 2012).

Therefore, some authors have suggested that 
the uncertainty of future climate projection may be 
underestimated by the CMIP3 multi-model ensem-
ble (Curry 2011; Hawkins and sutton 2011). One 
way to overcome the constraints of current climate 
models is to realize perturbed physics ensembles 
where several model parameters are randomly dis-
turbed (PalMer and williaMs 2008). This requires 
a much larger ensemble size than in CMIP3 or 
CMIP5, amounting to more than 10,000 simulations 
(JaCkson et al. 2004). Figure 11 compares the PDF of 
global-mean temperature for the period 2071-2100 
between the CMIP3 multi-model ensemble and an 
ensemble of 10,000 simulations with perturbed phys-
ics using an energy balance model (PaetH 2012). It 
is obvious that the disturbance of model parameters 
leads to a noticeably higher dispersion of the PDF 
of future temperature under A1B emissions scenario. 

This implies that very high warming rates become 
more likely, but the same is true for a global cooling. 
This has also been shown by stainFortH et al. (2005) 
on the basis of a global GCM, whereas Collins et al. 
(2011) pointed to similar PDFs for the CMIP3 multi-
model ensemble and a perturbed physics ensemble.

Our study has demonstrated that future climate 
change can be quantified in a probabilistic sense, 
i.e., in the light of the various sources of uncertainty 
as illustrated in figure 1. Our statements on climate 
change are more informative than classical trend 
analyses and test statistics because they comprise 
a quantification of uncertainty and, hence, provide 
an appropriate framework for decisions that are 
typically based on the behavior of a high-dimen-
sional chaotic system. Nonetheless, the question re-
mains whether our probabilistic predictions based 
on CMIP3 have to be revised in either direction: 
Towards broader PDFs (Fig. 11, red line) because 
CMIP3 is under-dispersive or towards optimized 
PDFs (Fig. 11, green line) because climate models 
can still learn from the data. The upcoming CMIP5 
multi-model data will provide new insights into this 
problem using new emissions scenarios and Earth 
system models of higher complexity (MeinsHausen 
et al. 2011; taylor et al. 2012). Nevertheless, the 
preliminary study by knutti and sedláček (2012) 
has not yet revealed distinct differences between 
PDFs from CMIP3 and CMIP5.
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Fig. 11: PDFs of  simulated global-mean temperature for the period 2071-2100 under emissions scenario A1B from the CMIP3 
multi-model ensemble of  global climate models, from a perturbed physics ensemble (PPE) with an extended energy balance 
model (EBM) (cf. Paeth 2012) and from a virtual optimized multi-model ensemble. The dashed line indicates the present-
day temperature level
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