
Preface

With respect to the Late Glacial and Holocene periods,
there is a lot of palaeoclimatic information available on the
catchment of the River Rhine. But the quality and quantity
of this information differs considerably, depending on the re-
gion as well as on the archives studied and the periods under
investigation. To give an overview of the state of the art, this
section, entitled ‘palaeoclimate’, is divided in two parts, each
of them dealing with different time resolutions and different
palaeoclimatic archives. In the first sub-section, Late Glacial
and Holocene climate fluctuations are discussed; the second
sub-section focuses on the last 500 years. The importance of
a closer look to climatic fluctuations before any agriculture,
i.e. before the oldest Linearband Ceramics in Central Europe
(before 7500 a BP), lies in their function as a baseline of nat-
ural climatic variability that needs to be distinguished from

prehistoric and historic human impact. Spatially we put the
emphasis of the Holocene section on the alpine area for two
reasons: Firstly, the large priority programme “Changes of
the Geo-Biosphere” covered with a great number of new
studies most of the Rhine catchment (e.g. KALIS et al. 2003;
ZOLITSCHKA et al. 2003) and we offer here just a comple-
mentary review from the headwaters. Secondly, some of the
natural archives of a mountain chain are different from the
lowlands and again complementary.

Regarding the last 10,000–12,000 years, the most com-
plete palaeoclimatic information is available from the Alps.
The Younger Dryas cold period and the shift to a warmer
Holocene is well documented. For the Holocene, several glac-
ier advances and timberline fluctuations indicate century
scale variations of the summer temperature in the order of up
to ± 1°C. Aquatic multi-proxy studies follow more or less the
same pattern. The sensitive alpine altitudinal belt reacted
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Zusammenfassung: Klimaentwicklung im Rheineinzugsgebiet auf holozäner und historischer Zeitskala
Der vorliegende Beitrag fasst den derzeitigen Wissensstand zur Klimaentwicklung im Rheineinzugsgebiet auf verschiede-

nen Zeit- und Raumskalen zusammen. Im ersten Teil beziehen sich die Aussagen vor allem auf das Gebiet des Alpen- und
Hochrheins, das wegen der Höhenerstreckung und seiner spezifischen geoökologischen Ausstattung als besonders klimasensitiv
angesehen werden kann. Grundlage bildet ein breites Spektrum an paläoklimatischen Befunden, über die die spätglaziale und
holozäne Klimaentwicklung entschlüsselt wird. Ergänzend werden Aussagen aus dem Mittelrheinabschnitt, die sich u.a. aus
den Eifelmaaren ableiten lassen und durch eine jährliche Auflösung besondere Aussagekraft besitzen, angeführt. Im zweiten
Teil bilden chronikalische Aufzeichnungen das Rückgrat der Analysen. Über diese lassen sich die letzten 1.000 Jahre soweit
auflösen, dass neben Aussagen zur allgemeinen Temperatur- und Niederschlagsentwicklung auch Klimaextreme, v.a. Hoch-
wässer bewertet werden können. Diese zeigen sowohl in einigen Nebenflüssen wie dem Main, vor allem aber auch im Gebiet
des Niederrheins signifikante Schwankungen auf. Darüber hinaus war es möglich, aus den europaweit gewonnenen Datensätze
Druckdatenfelder zu rekonstruieren, die jahreszeitliche und monatliche Zirkulationsanalysen ermöglichen.

Summary: The present article summarizes the state of the art knowledge concerning climatic fluctuations in the Rhine catch-
ment area on different time scales and spatial resolution. The first part deals with the results focussed on the alpine and
Hochrhein area, which can due to its elevation and specific geoecological setting regarded as especially sensitive to climatic
fluctuations. The basis is a broad variety of palaeoclimatic indicators, by which the climate development during the postglacial
and Holocene period can be analysed. In addition, results for the middle Rhine area, derived from Eifel maar varves are dis-
cussed. These data exhibit a yearly resolution. The second part is based on chronological readings, giving evidence about the
climate since AD 1000 in detail. Beside the overall temperature and precipitation development, these data also include infor-
mation about climatic extremes, likewise flood events. For some tributaries likewise the Main River and the lower Rhine area
there significant changes and fluctuations through time. In addition it was possible to derive out of European wide historical
data sets pressure grid sets, enabling the derivatio of circulation patterns.



with alternating periods of solifluction, erosion and soil de-
velopment, strongly influencing fluvial dynamics downvalley
(GAMPER 1987; VEIT 1993; VEIT a. HÖFNER 1993). An Early
to Mid Holocene Climatic Optimum seems to be present,
probably ending at about 3300 14C a BP. It might have been
caused by pronounced seasonality with increased summer
and reduced winter insolation. Along with solar variations, in
Central Europe in general the North Atlantic thermohaline
circulation might also play a role as a driving force for these
more or less cyclic climatic variations. Additionally, post-
glacial sea-level rise and flooding of the southern North Sea
probably lead to increased maritimity. In contrast to the Alps,
lowland ecosystems along the middle and lower course of the
Rhine were only sensitive to relatively high-amplitude cli-
matic fluctuations. However, archives with an annual time
resolution are available, such as, for example, the varved Eifel
maars.

Palaeoclimatic information since 1000, as well as for the
Holocene period, is drawn from isotopes, sediments, pollen,
tree rings and glaciers. Additionally however, historical docu-
ments can be used as the main palaeoclimatic archive for this
period (GLASER 2001). After 1500 there are almost continu-
ous descriptions of monthly, partly even daily weather data
available. From the end of the 17th Century data from indi-
vidual instrumental measurements can be used, and since
1860 international meteorological networks have been in
function. Temperature trends show a clear seasonality for the
last 500 years. During the Little Ice Age, especially winters
were relatively cold, with no great variations in summer tem-
peratures. The latter were only depressed during certain pe-
riods, such as 1580–1600 and 1820–1860, leading to glacier
advances in the Alps.

Frequency and intensity of natural hazards, such as floods,
varied through time. Floods have been reconstructed for the
last 1,000 years in several subcatchments using historical
methods (GLASER a. STANGL 2003; WANNER et al. 2004;
GLASER et al. 2004). Obviously, there was an increase of these
events during the Little Ice Age. However, floods are singular
events and might not be synchronous in different subcatch-
ments. Moreover, a separation of climate and human influ-
ence is very difficult. As a conclusion one can state that re-
garding temperature and precipitation development, a high
natural variability exists and natural disasters always hap-
pened. Information about older fluvial processes during the
Holocene is relatively scarce. Results are available from sub-
catchments, e.g. from parts of the Rhine (DAMBECK a.
THIEMEYER 2002) the Main (SCHIRMER 1983), and others
(e.g. BECKER 1982; BROWN 2003; SCHELLMANN 1991, 1994;
STARKEL 2003). In the Alps very few studies on past fluvial 
dynamics have been realized (e.g. BURGA et al. 1997; GEITNER

1999; HINDERER 2001; PATZELT 1994; VEIT 2002; VEIT a.
HÖFNER 1993). Today, up to more than 50% of the water 
discharge in the Lower Rhine has its origin in alpine catch-
ments.

In spite of the relatively well-established general pattern of
palaeoclimatic fluctuations in Central Europe and the whole
Rhine catchment, many aspects remain unclear, and there
are still a lot of methodological problems. One of the main

problems seems to be the absolute dating control. This holds
true especially for the long records (Holocene). Data from
archives with annual resolution, such as tree rings and varved
lake sediments, are not available everywhere. 14C data pro-
vide only a relatively broad time resolution. Events or periods
yielding more or less the same 14C age may differ for decades
or centuries, making a comparison and interpretation of
causal links difficult, if not impossible.

In an area as large as the Rhine basin, available palaeo-
ecological archives differ greatly from region to region. For
example, data coming from glacier variations, ice cores and
timberline fluctuations in the Alps cannot be gained in the
downstream lowlands. Since both time resolution and palaeo-
climatic information from different palaeo-ecological
archives are not identical, as many archives as possible should
be used and compared (multi-proxy approach). Glaciers and
timberline may both indicate summer temperature, but glac-
iers additionally react to humidity changes. Permafrost varia-
tions indicate annual temperatures, but snow plays an impor-
tant role, too. Holocene temperature depressions might be
indicated by moraines and inactive or fossil rock glaciers, but
warm periods are difficult to detect by means of glaciers and
permafrost. Reconstructions of precipitations are even more
problematic than temperature. Generally, only the effective
moisture (precipitation minus evaporation) can be deter-
mined. Moreover, precipitation changes may develop differ-
ently from region to region, leading to distinct dynamics in
subcatchments. Lake level fluctuations might be caused by
precipitation changes alone, or by temperature/evaporation
changes as well.

Another problem is the fact that palaeoclimatic archives
are frequently influenced not by the palaeoclimate alone. For 
example, it sometimes takes centuries or even more for plants
to spread over long distances, which causes a time lag be-
tween climate and vegetation change. In historical times hu-
man influence on river dynamics is important due to river en-
gineering, vegetation changes, soil erosion in the catchment,
etc. Soil erosion may have already been initialised by the first
colonisation during the Neolithic period, some 8,000 years
ago (e.g. ZOLITSCHKA et al. 2003), pointing to the urgent need
to differentiate between climatic and human influence.

There are clear needs for further investigation regarding
the palaeoclimate in the River Rhine catchment. The main
problems and recommendations are:

1. obtaining a better dating control (quality and temporal
scale)

2. better identification and characterization of warm pe-
riods

3. improvement of transfer functions and models
4. reconstruction of Holocene fluvial processes.
5. reconstruction of precipitation or effective moisture in

more subcatchments, to test the spatial variability
6. separation of climatic and human impacts on

Holocene proxies
7. using as many palaeoecological archives as possible

(multi-proxy approach). This will allow for control and more
detailed palaeoclimatic interpretation (e.g. summer tempera-
ture, winter temperature, annual temperature).
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1 Holocene climate fluctuations in key areas 
of the River Rhine catchment

1.1 Introduction

Climatic variations on many temporal, spatial, and
functional scales affect various catchment processes, in-
cluding water budgets and erosional and depositional
regimes (e.g. VANDENBERGHE a. MADDY 2001). There-
fore climatic reconstructions are crucial to understand
not only correlations between climatic changes and
catchment processes but also possible causal links.
Through quantification of such processes by com-
bining data and models, sensitivity analyses become
possible.

The goal of the present review is first to summarize
the existing climatic reconstructions over the entire
Holocene (primarily in the River Rhine catchment)
and second to address open questions that need to be
answered in future studies in order to improve our 
understanding of climatic effects on river processes. We
provide a short introduction first to the climate
archives, then to the climatic parameters that can be 
reconstructed. Discussions of methodology are kept to
a minimum but up-dated reviews are presented in
BIRKS (2003), BROOKS (2003) and LOTTER (2003).
Holocene climatic reconstructions are then reviewed
for the different regions in the River Rhine catchment
from the Alps to the North Sea.

The Holocene (i.e. the past 11,500 years) offers 
two advantages for an integrated understanding of
climatic and environmental changes: it has a duration
long enough to allow the distinction to be made 
between fluctuations and trends; but, in contrast to 
the Late-Glacial with its very rapid changes of large
amplitude, it is also similar enough to the present to
provide a baseline for the assessment of climatic and
anthropogenic forcing (e.g. KALIS 2003; ZOLITSCHKA

2003).
Weaknesses in dating should not be overlooked. Any

review of Holocene climatic fluctuations on the spatial
scale of the River Rhine catchment must try to corre-
late results from various sites and natural archives. In
many case studies, however, the time control is rather
weak, and correlations among sites as well as among
methods may thus suffer from a “self-reinforcing syn-
drome”. If synchroneity actually exists, we may still be
mesmerized by the basic question, just as were early re-
searchers in the Alps (e.g. ZOLLER 1977 or PATZELT

1977; PATZELT a. BORTENSCHLAGER 1973): Why should
recording systems as different as glaciers, lake levels,
and subalpine forests respond synchronously to various
types of climatic fluctuation?

1.2 The types of natural archives

Every type of archive has its strengths and weak-
nesses in its sensitivity to various parameters of past 
climate as well as with respect to the archive-inherent
temporal resolution.

Traditionally, climatic fluctuations in the Alps and in
Central Europe have been reconstructed from geomor-
phic and glaciologic features as well as from palaeob-
otanical data from lakes and mires. More recently, oxy-
gen isotopes measured either on bulk-sediment carbon-
ates (e.g. EICHER 1991; SIEGENTHALER a. EICHER 1986)
or on ostracodes have also been used to reconstruct 
climatic change in Central Europe.

1.2.1 Glaciers and glacial geomorphology

Glaciers and their fore fields are among the most
spectacular glaciological and geomorphic features of
high alpine environments and river catchments. The
history of glacier variations can be traced by mapping
moraines and dating imbedded wood and soils 
(e.g. HORMES et al. 2001) as well as by interpreting 
historical documents and early paintings of glaciers
(ZUMBÜHL a. HOLZHAUSER 1988).

Glaciers respond to the climatic system and its long-
term variations, but the interactions between climatic
parameters (e.g. summer temperature, annual or sea-
sonal precipitation) and glacier mass-balance are com-
plex and not completely understood. A change in the
mass-balance of an individual glacier interacts with a
number of local factors such as the bedrock topography
before it results in an advance or retreat of the glacier
tongue. For the recession of the last decades observed
on the majority of the glaciers in the Alps and else-
where in the world see HAEBERLI et al. (1999) and
GLASER et al. (2005), this issue.

1.2.2 Biostratigraphies in lake sediments and peat

Traditionally, pollen has provided the best-known
biostratigraphy because of its ubiquity, good preserva-
tion in lake and mire deposits, and rich morphology,
making identifications possible on various taxonomic
levels. Vegetation in and around lakes and mires may
also be reconstructed from plant macrofossils (e.g.
BIRKS a. BIRKS 2000, 2003). Other groups of organ-
isms, such as terrestrial insects, small aquatic inverte-
brates (Cladocera, Ostracoda, chironomid larvae), al-
gae (diatoms and other), and testate amoebae
(Rhizopoda) may hold climatic information (BARBER

2003), see also section 3. But for all biostratigraphic
changes the non-climatic factors (such as nutrient status
of lakes or soils) as well as historical processes (includ-
ing migration of species) overlap with the climatic in-
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formation and need to be separated. The temporal res-
olution can often be refined to about 10 years, or in the
rare cases of varves (annual laminations in lake sedi-
ments) even to single years (e.g. LOTTER 1999). Exam-
ples for the high potential of varved sediments are pre-
sented in section 6 for the Eifel maar lakes.

A special opportunity in studies of biostratigraphies
in alpine and subalpine landscapes is the reconstruction
of past timberline fluctuations as a climatic proxy. Tree
species at timberline are at their physiological limits. A
change to cooler climate can exceed the tolerance of
the species concerned, causing high mortality by frost
or drought. Such tree diebacks can depress timberline
to a new elevation. If temperature increases again, tree
species may be able to re-colonise the lost territories but
in theory such a vegetation response may be delayed for
decades or centuries because of processes such as slow
rates of spread, unfavourable competitional conditions,
or slow growth due to the harsh alpine climatic condi-
tions. On the other hand, tree species forming the 
timberline may survive vegetatively during an un-
favourable period and then respond with higher pro-
ductivity (of pollen or fruits or wood) amazingly fast
(e.g. at the transition from the Late Glacial to the
Holocene, see WICK (2000) and TOBOLSKI a. AMMANN

(2000)). The present-day relationship between air or
soil temperature and tree-limit is rather close (e.g.
KÖRNER 1998), but see also sections 3.1 and 4.2.

1.2.3 Stable isotopes in sediments

The stable isotope composition of precipitation is
strongly linked to the temperature in moisture bearing
air masses (GRAFENSTEIN et al. 1999a, b). In lakes the
isotopic composition of the water will affect the isotopic
signal in autogenic and biogenic carbonates formed in
the water column. Therefore, stable isotopes of oxygen
measured in carbonate sediments (if detrital input can
be ruled out) or in ostracod valves have proven to be
useful proxies for past air temperatures (e.g. EICHER a.
SIEGENTHALER 1976; GRAFENSTEIN et al. 2000;
GRAFENSTEIN et al. 1999b). However, two additional
factors may also influence the ratio of the oxygen iso-
topes: i.e. the origin of the moisture (e.g. Mediter-
ranean vs. Atlantic), and the residence time of the wa-
ter in the lake (depending inter alia on the evaporation
from the lake surface).

1.2.4 Past changes in lake levels

The reconstruction of past changes in lake-levels
provides proxy data relevant to the Holocene palaeo-
hydrological history (WOHLFARTH a. SCHNEIDER 1991;
HARRISON a. DIGERFELDT 1993; YU a. HARRISON

1995; MAGNY 1998). But lake-level changes can be in-

duced by various local non-climatic factors such as
damming of the lake outflow by a tributary, distur-
bance in the catchment area by fire (WOHLFARTH a.
AMMANN 1991). However, regionally synchronous
changes in lake levels can be assumed to be climatically
driven (HARRISON a. DIGERFELDT 1993). Moreover,
comparison of lake-level records with other palaeocli-
matic records based on other proxy data from the same
region (HAAS et al. 1998) or from geomorphic, ice-
sheet, and marine records (MAGNY a. SCHOELLAMMER

1999) can give evidence for their climatic significance.
Some difficulties have to be taken into account in

comparing regional lake-level records (MAGNY 1992).
For instance, lakes cover a range of sensitivities to cli-
matic events, depending on their hydrological regimes
(e.g. pluvial vs. proglacial), the ratio of catchment/lake
areas, and their type (closed or out-flowing basins). An-
thropogenic forest clearance in the catchment area can
reinforce the impact of changes in water supply (e.g.
KALIS et al. 2003; ZOLITSCHKA et al. 2003). Further-
more, the reconstruction of lake-level changes is also 
affected by the exposure and erosion of the studied site.
Near-shore areas in lakes are often characterized by
sediment hiatuses (MAGNY a. RICHOZ 2000; MAGNY

2001) that are generally absent in cores taken from
deeper parts of lacustrine basins .

1.3 What climatic parameters may be reconstructed?

Even if STOKSTAD (2001) summarizes “Myriad ways
to reconstruct Past Climate” we still are confronted
with the problem that not only climatic parameters 
are auto-correlated but all proxy data (continental or
marine) are influenced by many factors, only some of
which are directly related to climate.

1.3.1 Summer temperatures

Traditional interpretations of changes in biostrati-
graphies were rather based on expert knowledge about
ecological requirements of taxa and their biogeo-
graphic distributions than on numerical relationships
between species and their abiotic environment. Re-
cently, however, several quantitative inference models
have been elaborated for different regions of the world.
These so-called transfer functions are based on linear
or unimodal empirical relationships between biota and
their physical or chemical environment and represent a
multi-indicator species (assemblage) approach to envi-
ronmental reconstruction (for details see e.g. BIRKS

1995). As biota are most active and reproduce during
the warm season, these transfer functions commonly
model their relationship to summer or July tempera-
tures. This is valid not only for pollen (e.g. GUIOT 1991;
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LOTTER et al. 2000a) but also for organisms living in
aquatic environments, such as chironomids ostracods,
diatoms and Cladocera. Most of these transfer func-
tions were developed for arctic and boreal regions, but
a few allow quantitative summer-temperature infer-
ences for the Alps and their foreland (e.g. WUNSAM et
al. 1995; LOTTER et al. 1997a), with an accuracy of be-
tween 1.2 and 1.8°C that is inherent in the method.

A yet unresolved problem is the discrepancy often
observed between beetle-inferred summer tempera-
tures and temperature reconstructions based on chi-
ronomids or stable isotopes (e.g. AMMANN a. OLDFIELD

2000). The mutual-climatic-range method (MCR) 
applied to beetles (ATKINSON et al. 1987; COOPE a.
LEMDAHL 1996; LEMDAHL 2000) usually results in
much higher estimations of mean July temperatures
than all other methods.

In dendro-climatology the density of the late wood 
is usually considered to show the strongest correlation
to the sums of June to September temperatures
(SCHWEINGRUBER et al. 1979). Efforts to use the more
readily available data on tree-ring width with a large
spatial coverage are presented (e.g. by WILSON et al.
2003).

For past changes in timberline elevation, the question
remains which temperature thresholds are effective for
which part of the year, even if the relationship between
(air or soil) temperature and tree-limit is rather close.
ELLENBERG (1966) suggested that in the Alps the tim-
berline is positioned where air temperature reaches
more than 5°C for 100 days. Other suggested relation-
ships are for example the air temperature of the
warmest month, e.g. 7.5°C for Pinus cembra (LANDOLT

1992) or of the growing season. It seems likely that tim-
berline is related to temperature during the growing
season, considering that low temperatures impede a
sufficient biomass production for trees (concept of min-
imum temperature for tree growth; see KÖRNER 1998).
An additional problem can be caused by the spatial
band (i.e. the ecocline) between the timberline (i.e. up-
per limit of more or less dense forest) and tree-line (i.e.
the upper elevation of single trees in favourable micro-
habitats) as discussed by TINNER and THEURILLAT

(2003).
For the Alps it is conventionally assumed that under

undisturbed (and natural) conditions the transitional
zone between forest and alpine meadows would en-
compass only about 100 altitudinal meters (OZENDA

1988). The two vegetation types that form this clear
boundary normally leave unmistakable traces in
archives such as lakes and mires that can be followed
back for millennia. The analyses of these macrofossils
and microfossils may hence reveal the past position of

the timberline and its fluctuations in response to cli-
matic change. Assuming lapse rates of 6–7°C km–1 and
timberline vegetation in equilibrium with climate,
Holocene summer temperature variations may be re-
constructed.

1.3.2 Winter temperatures

In spite of the early seminal paper by IVERSEN (1944)
using “climatic space” (mean temperatures of the
warmest and of the coldest month) vs. biogeographic
space of three frost-sensitive plant genera (Hedera, Ilex,
Viscum), estimations of winter temperatures remained
more difficult. This “Iversen-approach” sensu lato is
also applied in numerical techniques (e.g. KLIMANOV

1984; TARASOV et al. 1999), that may provide spatially
coherent pictures but rather variable error ranges. Sim-
ilarly, the mutual climatic range method applied to fos-
sil Coleoptera uses an estimate of continentality similar
to that of IVERSEN, but the difference between the
warmest and the coldest month rather than the mean
of the coldest month (e.g. COOPE a. LEMDAHL 1996).

1.3.3 Precipitation and its seasonality

Proxies for precipitation are even more problematic
than the ones for temperatures. What can be estimated
in the best case is the past effective moisture, i.e. the dif-
ference between precipitation and evapotranspiration
(M = P – E). Studies on the hydrology of ombrotrophic
raised mires using peat humification and rhizopods
may give information on past precipitation regimes (e.g.
BARBER 2003). Such studies have been carried out in
north western Europe (e.g. AABY 1976; CHARMAN et al.
2004) but there are only very few such studies from
Central Europe and the Alps (MITCHELL et al. 2001;
ROOS-BARRACLOUGH et al. 2004).

The approach of reconstructing lake-level changes is
based on the assumption that closed lake basins are the
nearest equivalent of a “long-term rain gauge” avail-
able for palaeoclimatological studies. Closed basins are
rare in temperate zones such as the catchment of the
River Rhine. Most lake-level reconstructions in Europe
are therefore made for lakes with inlets and outlet.

Furthermore, it is difficult to reconstruct tempera-
ture and precipitation from lake-level fluctuations
alone, because a positive water balance may be due to
a decrease in precipitation and/or a decrease in tem-
perature. Moreover, other factors such as cloudiness
and wind have a direct impact on lake evaporation
(HOSTETLER a. BENSON 1990). However, at present
pronounced low water levels of lakes without glacial
water supply in the Jura Mountains and on the Swiss
Plateau are often associated with dry and warm late
summers. This observation suggests that Holocene
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lake-level lowering could reflect periods of negative
summer water balance due to decreasing water supply
and to lengthening summer season with stronger evap-
oration and evapotranspiration (MAGNY 2004).

Glacier advances and retreats also can be assumed to
give (partial) information about the water balance.
Glacier mass balance depends not only on summer
temperatures (ablation) but also on snow accumulation
in Alpine catchment areas (alimentation).

What may be the most relevant precipitation effect
for river systems is the frequency and magnitude of
extreme thunderstorms. The temporal distribution of
turbidity currents in lake sediments may be a proxy 
of extreme precipitation events that remains to be 
exploited (GILLI et al. 2003).

1.3.4 The link between temperatures and precipitation during
the vegetation period

The observation that cool summers may also be wet
summers is often made in modern and historical clima-
tology, but it is not true for all summers, for high values
of precipitation may also be caused by high frequencies
of thunderstorms . In the case of climate proxies,
such a (simplifying) correspondence may serve as a
qualitative explanation for the synchronicity between
fluctuations of timberlines, glaciers, and lake levels: In 
summer low-temperature-sums (expressed as growing-
degree-days) and high precipitation sums may result in
poor and short growing seasons. At the same time little
ablation and high albedo (i.e. positive water-balance)
may cause glaciers to advance, and high values of P-E
in catchments may cause lake levels to rise. If such con-
ditions last over longer periods the result thus may be
lower timberlines, longer glacier tongues, and higher
lake levels (e.g. PAULSEN et al. 2000; MAGNY 1993a).

Additional, rather elegant methods are restricted to
the period covered by historic documents such as
records of frozen lakes and rivers.

1.4 The alpine area

1.4.1 Glaciers and proglacial varves

Based on glaciological data, depressions of the mean
annual temperature of 3–4°C (HAEBERLI 1991) and of
the mean summer temperature of 1.0–1.4°C (HERREN

et al. 2000) have been deduced for the Younger Dryas
period. Annual precipitation at an altitude of 2,000 m
a.s.l. may have been as much as 25% lower than today
at the northern border of the Alps and 30–35% lower
in the inner alpine areas (HAEBERLI 1991).

With the beginning of the Holocene about 11,500
cal years ago (10,000 radiocarbon years ago) and the 
final melting back of the Alpine glaciers far into the 

upper reaches of the mountains, there appears to be 
evidence of an extraordinarily steady climatic and
glacial evolution, with reduced or minimal fluctuations
(Fig. 1 D). Compared with the preceding Late-Glacial
period, a much warmer climatic level is now well docu-
mented. At least eight advancing phases can be com-
pared with the same number of recessional phases with
a glacial extent similar to that found today. The period
of maximum extent in 1850/60 AD, with its pro-
nounced moraine systems, thus represents a dimension
of glacial history that is not only typical for the period
of the Little Ice Age (ca. 1350–1850 AD), but also for
almost all the preceding Holocene periods of maxi-
mum extent (PATZELT a. BORTENSCHLAGER 1973;
PATZELT 1995; FURRER 1991; HOLZHAUSER 1995).

However, much more uncertainty exists about the
minimum extents in the warm periods than about the
geomorphic-stratigraphic periods of advance, for
which clear proof can usually be given because of dat-
able morainic deposits. Recent research into glacial his-
tory indicates that glaciers during the warmer or drier
climatic periods of the Holocene might have been
slightly smaller than today (HORMES et al. 2001). Thus
for the period of about 8,850 to 5,750 cal (or 8,000 to
5,000 radiocarbon-) years ago peat profiles found near
the edge of the ice at the Rutor Glacier (PORTER a.
OROMBELLI 1985; BURGA 1991) and at the Gauli Glac-
ier (WAESPI 1993) showed that the ice extent was
smaller than during the 1980s. The same was found in
the forefield of the Pasterze Glacier in the Austrian
Alps (SLUPETZKY et al. 1998; NICOLUSSI a. PATZELT

2000). Even at the Great Aletsch Glacier (which is con-
sidered to react slowly at its terminus because of its
mass), fossilized centuries-old wood debris of trees
grown in situ recently emerged from under the ice edge.
This means that the glacier was probably shorter ap-
prox. 3400 cal years ago, i.e. just following the final
phase of the CE-7 fluctuation (“Löbben”, 3750 to 3400
cal years ago or 3500 to 3200 radiocarbon years BP)
and approx. 2000 cal years ago than it was in the AD
1990s (HOLZHAUSER 1997).

The Holocene seems to be a period of glacial varia-
tions that, although numerous, were always of similar
size and caused by climatic changes of comparably low
amplitude (± 1°C). Within the Holocene glacial varia-
tions, the large extent of the glaciers around the year
1850/60 AD marks a characteristic extent and rapidity
that was reached repeatedly but was surpassed only
rarely. It is quite possible that glacier dimensions in the
earlier warm phases of the post-glacial period, i.e. the
time of the “pre-industrial”, mainly “natural” climate,
were smaller than those of the present greenhouse
time. The current glacial situation is thus within the
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Holocene range of variation, while being clearly in the
warm transition area of all reconstructable glacial and
climatic fluctuations. This range, on the other hand,
will probably be exceeded if the predicted tempera-
ture-rise scenarios really occur (IPCC 2001; MAISCH et
al. 2000).

Varve studies of a proglacial lake by LEEMANN and
NIESSEN (1994) and OHLENDORF (1999) suggest that in
the Eastern Swiss Alps no glaciers existed between
about 10,750 and 3,500 cal a BP (or 9,400 and 3,300 
radiocarbon a BP). Neoglaciation began around 3,500
cal a BP, and the highest glacier-induced sediment 
accumulation, which also points to the maximum
Holocene glacier extent, occurred during the Little Ice
Age. For the Little Ice Age several well-documented
glacier advances are evidenced in the Alps (WANNER et
al. 2000).

1.4.2 The timberline

The timberline represents the major ecotone in the
Alps that is sensitive to climatic change. Tentative late-
glacial and Holocene timberline reconstructions based
mainly on palynological data have been presented for
different parts of the Alps (WELTEN 1982; SCHNEIDER

1985; BURGA 1987). However, two major problems
make purely pollen-derived reconstructions problem-
atic: firstly, most alpine studies have a poor time control
(i.e. are based on few radiocarbon dates only), and sec-
ondly, pollen and spores are easily transported by winds
for hundreds or thousands of metres. Therefore, to spa-
tially trace past treeline positions unequivocally, macro-
fossils are certainly better indicators than pollen grains.
In addition, stomata of conifers (pines, spruce, fir, larch,
and juniper, usually counted on pollen slides) may serve
as proxies for the presence of needles (AMMANN a.
WICK 1993). But due to the wide distribution of pollen
by wind, pollen results have been successfully used to
capture regional climate-induced vegetational signals,
such as collapses or expansions of entire vegetation
belts (e.g. subalpine Pinus cembra forests, TINNER et al.
1996). In this sense macrofossil and pollen analysis
complement one another (local vs. regional vegetation
reconstructions, see TINNER a. THEURILLAT 2003 and
Fig. 1 A, B).

Only a small set of such combined investigations is
available from higher elevations in the Alps, where a re-
liable estimation of past timberlines is possible (e.g.
MARKGRAF 1969; WELTEN 1982; LANG a. TOBOLSKI

1985; LANG 1993; PONEL et al. 1992; AMMANN a. WICK

1993; WICK et al. 2003; HEIRI 2003a; HEIRI et al.
2003b). In a study of two well-dated sites in the Central
Alps (WICK a. TINNER 1997) could correlate Holocene
timberline fluctuations with glacier advances (PATZELT

1977), solifluction phases (GAMPER 1993), and dendro-
climatic data (RENNER 1982; BIRCHER 1986; KAISER

1991).
The interpretation of palaeobotanical results from

timberline is based on the assumption that forest
diebacks caused by cold periods are characterised by
decreasing frequencies of macrofossils and microfossils
of tree species in the sediment. In contrast, warm cli-
matic periods are mirrored by increasing frequencies of
tree-species remains because of higher local abundance
of trees around the site. However, in studies with very
high temporal resolution, an opposite effect may be
possible: during the first years of climatic cooling in-
creasing mortality initially may lead to an increased 
release of tree macrofossils such as wood, bark, needles,
and seeds to soils and sediments.

According to several authors (e.g. BURGA a. PERRET

1998) the range of Holocene climatically induced tim-
berline fluctuations was not more than 100–150 m.
Assuming modern air-temperature lapse rates for the
Alps of 6–7°C km–1, the Holocene climatic fluctuations
during the warm season may, therefore, have had an
amplitude of 0.5–1°C.

In figure 1 (A and B) oscillations of timberline are 
illustrated by declines in the curves (macrofossils and
pollen) of Pinus cembra and the sum of tree pollen. After
the local extinction of Pinus cembra at around 4000 cal
BP the cold phases are recorded by tree species growing
200–300 m below the former Pinus cembra belt (e.g. Picea
abies).

This approach is based on well-dated continuous
profiles showing an uninterrupted development
throughout the entire prehistoric Holocene and was
first presented by (WICK a. TINNER 1997). It differs
from previous timberline studies in the Alps, for single
cold phases were conventionally identified at different
name-giving sites (e.g. Misox, Piora). The new ap-
proach may help to overcome the following problem-
atic aspects of previous studies:

(1) Synchronous climatic changes were sometimes
interpreted as asynchronous because of site-related
dating problems.

(2) Considering that in previous studies the
Holocene overviews relied on discontinuous sources,
the general Holocene trend was not directly docu-
mented. Moreover, because of site-related environ-
mental differences (such as different altitudes, soil con-
ditions, disturbances) the magnitudes of the timberline
and climatic oscillations could not be directly com-
pared.

(3) Single cold phases were unpublished or pub-
lished separately in local or national journals. Because
of the large amount of data, the synthesis publications
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Fig. 1: Synthesis over Holocene fluctuations in the Alps based
on various archives on a time-scale of calibrated years 
before present (BP).

A: Timberline fluctuations recorded by pollen percentages
(Pinus cembra, sum of trees) and macrofossil concentrations
(Pinus cembra needles) at Gouillé Rion (Swiss Alps, TINNER

et al. 1996; WICK a. TINNER 1997). The pollen sum in-
cludes only subalpine and alpine taxa.

B: Timberline fluctuations recorded by pollen percentages
(Pinus cembra, sum of trees) at Lengi Egga (Swiss Alps, TIN-
NER a. THEURILLAT 2003). The pollen sum includes only
subalpine and alpine taxa.

C: Central European cold-humid phases (HAAS et al. 1998).
CE-1 approximately corresponds the Schlaten oscillation
(PATZELT 1977), CE-2 to the Venediger and Bivio oscilla-
tions (PATZELT 1977; ZOLLER 1977), CE-3 to the Misox os-
cillation (ZOLLER 1960), CE-4 to the Frosnitz oscillation
(PATZELT 1977), CE-5 to the Rotmoos I and Piora I oscil-
lations (PATZELT 1977; ZOLLER 1977), CE-6 to the Rot-
moos II and Piora II oscillations (PATZELT 1977; ZOLLER

1977), CE-7 to the Löbben and Tiefengletscher oscilla-
tions (PATZELT 1977; ZOLLER 1977) and CE-8 to the His-
torical First Millennium BC and Göschenen I oscillations
(PATZELT 1977; ZOLLER 1977). For further details and
original chronologies of cold phases in previous studies
see WICK and TINNER (1997) and HAAS et al. (1998).

D: Glacier length variations: The dimension of the present-
day glaciation lies at the «warm» boundary but still within
the range of the Holocene variations (compiled after var-

ious sources, adapted and modified after (MAISCH et al.
1999, 2000).

E: Dated wood from Swiss Alpine glaciers representing
warm phases (HORMES et al. 2001).

F: Dated wood from Austrian Alpine glaciers (SLUPETZKI et
al. 1998; NICOLUSSI a. PATZELT 2000).

G: Lake-level changes combined from the three sites Le 
Locle (Early Holocene, MAGNY a. SCHOELLAMMER 1999),
Seedorf (Late Holocene, MAGNY a. RICHOZ 1998), and
Montilier (MAGNY a. RICHOZ 2000). The abbreviations
on the right side (PC, B, P, CH, GM, CE, LL*, JX, RE) stand
for phases of high lake levels according to MAGNY (1999).

H: Holocene climatic cold phases as evidenced by marine
sediment analyses from the North Atlantic (BOND et al.
1997, 2001). The cold period 5 (BOND et al. 1997) was
subdivided into 5 a and b according to BOND et al. (2001).

The dots in A, B, and G show the chronological position of
radiocarbon dates used for the depth-age models.

Fig. 1: Synthese der Holozänen Schwankungen in den Alpen
basierend auf verschiedenen Archiven in kalibrierten Jah-
ren vor heute (BP).

A: Schwankungen der Baumgrenze aufgezeichnet als Pol-
lenanteile (Pinus cembra, Summe der Baumpollen) und Ma-
krofossilkonzentrationen (Pinus cembra Nadeln) in Gouillé
Rion (Schweizer Alpen, TINNER et al. 1996; WICK a. TIN-
NER 1997). Die Pollensumme beinhaltet nur subalpine
und alpine Arten.
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B: Schwankungen der Baumgrenze aufgezeichnet als Pol-
lenanteile (Pinus cembra, Summe der Baumpollen) in Lengi
Egga (Schweizer Alpen, TINNER a. THEURILLAT 2003).
Die Pollensumme beinhaltet nur subalpine und alpine 
Arten.

C: Mitteleuropäische Kältephasen (HAAS et al. 1998). CE-1
entspricht ungefähr der Schlaten Schwankung (PATZELT

1977), CE-2 den Venediger und Bivio Schwankungen
(PATZELT 1977; ZOLLER 1977), CE-3 der Misox Schwan-
kung (ZOLLER 1960), CE-4 der Frosnitz Schwankung
(PATZELT 1977), CE-5 den Rotmoos I und Piora I Schwan-
kungen (PATZELT 1977; ZOLLER 1977), CE-6 den Rot-
moos II und Piora II Schwankungen (PATZELT 1977;
ZOLLER 1977), CE-7 den Löbben und Tiefengletscher
Schwankungen (PATZELT 1977; ZOLLER 1977) und CE-8
den Schwankungen im ersten Jahrtausend v. Chr. und
Göschenen I (PATZELT 1977; ZOLLER 1977). Weitere 
Details und Chronologien aus vorhergehenden Studien
finden sich bei WICK und TINNER (1997) und HAAS et al.
(1998).

D: Änderungen der Gletscherlängen: Die heutige Gletscher-
ausdehnung liegt im Bereich der «warm» Grenze, jedoch

noch innerhalb der holozänen Schwankungsbreite (zu-
sammengestellt aus verschiedenen Quellen, verändert
übernommen aus (MAISCH et al. 1999, 2000).

E: Datiertes Holz aus Schweizer Alpengletschern als Reprä-
sentant für warme Abschnitte (HORMES et al. 2001).

F: Datiertes Holz aus Österreichischen Alpengletschern
(SLUPETZKI et al. 1998; NICOLUSSI a. PATZELT 2000).

G: Seespiegelschwankungen als Kombination der Befunde in
Le Locle (Frühes Holozän, MAGNY a. SCHOELLAMMER

1999), Seedorf (Spätholozän, MAGNY a. RICHOZ 1998),
und Montilier (MAGNY a. RICHOZ 2000). Die Abkürzun-
gen auf der rechten Seite (PC, B, P, CH, GM, CE, LL*, JX,
RE) kennzeichnen Hochstandsphasen nach MAGNY

(1999).
H: Holozäne Kältephasen nach Meeresbodenablagerung im

Nordatlantik (BOND et al. 1997, 2001). Die Kältephase 5
(BOND et al. 1997) wurde unterteilt in 5 a und b gemäß
BOND et al. (2001).

Die Punkte in A, B, und G markieren die Radiokohlenstoff-
datierungen aus Tiefen-Alter-Modellen
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were made without raw data (14C-dates, pollen curves,
sedimentological results). This led some authors to
question the accuracy and reproducibility of such 
results (e.g. LANG 1993).

(4) Because of the multitude of publications and
hence of named cold phases the temptation was high to
selectively choose cold phases fitting one’s own results.
Unfortunately, such arbitrary selections are traceable in
some studies from the Alps.

Recently, a systematic redefinition of the Holocene
climatic fluctuations in the Alps was attempted by
(HAAS et al. 1998) introducing a nomenclature (CE-1 to
CE-8, see Fig. 1 C), which is based on explicitly defined
raw data such as taxa curves and 14C-dates of four sites.
Surprisingly, this small selection of sites confirmed
most cold phases of earlier works accomplished be-
tween the 1950s and the 1990s. Furthermore, some of
the more severe Alpine oscillations seem synchronous
with the cool climatic periods recently found in the
North Atlantic and in Greenland (HEIRI et al. 2004).

1.4.3 Terrestrial and aquatic multi-proxy studies 
on an altitudinal gradient

In recent years several well-dated lake sediments in
the Bernese Oberland were studied using a multi-proxy
approach (LOTTER et al. 2000b; KORHOLA et al. 2000).
These lakes are situated along an altitudinal transect
spanning modern vegetational zones from the montane
to the alpine belt. According to quantitative climate 
reconstructions using different biological proxies such

as vegetation remains (WICK et al. 2003), and chirono-
mids (HEIRI a. LOTTER 2003) that are supported by sed-
imentological (KOINING et al. 2003; OHLENDORF et al.
2003), and geophysical data (HIRT et al. 2003), the sum-
mer temperatures were on average higher in the early
to mid-Holocene and decreased gradually towards
modern values. Climatic oscillations such as the one
around 8200 cal a BP that led to timberline depressions
had also an impact on aquatic organisms, most likely
through prolonged ice-cover leading to a shortening of
the growing season and to anoxic conditions in the bot-
tom waters of the lakes (LOTTER a. BIGLER 2000).

Comparing chironomid-inferred temperatures with
the palaeobotanical data of TINNER et al. (1996), HEIRI

(2001) suggested six Holocene periods of reduced sum-
mer temperature in the Alpine region (at 10500–10400
cal a BP, 9200–9100 cal a BP, 8200–7700 cal a BP,
6000–5800 cal a BP and 4000–3700 cal a BP). These
coolings were tentatively correlated to ice-rafted debris
events in the North Atlantic. Recent evidence suggests
a different timing of ice rafting in the North Atlantic
(BOND et al. 2001), making this correlation question-
able. Nevertheless, the results of TINNER et al. (1996)
and HEIRI et al. (2003) show that millennium- to 
centennial-scale Holocene climatic oscillations can be
found in biotic records from the Alps. In contrast to
glacier reconstructions their records suggest that cold
phases at ca. 10700–10500 and 8200–7700 cal a BP
were more severe than climatic fluctuations during the
rest of the early to Mid-Holocene.



1.4.4 The combination of lake levels and pollen

Models using both pollen and lake-level data can be
used to reconstruct changes in moisture conditions
(GUIOT et al. 1993; HARRISON a. DIGERFELDT 1993).
Pollen data may offer information on past changes in
precipitation as well as in temperatures. But in the mid-
European latitudes precipitation is rarely a main limit-
ing factor in vegetational development. From a model-
ling approach combining pollen and lake-level data,
various climatic parameters have been reconstructed at
Le Locle, Swiss Jura, for the Younger Dryas to the Mid-
Holocene period (MAGNY a. BÉGEOT 2004). This quan-
titative reconstruction suggests that phases of lake-level
rise coincided with increasing annual precipitation, P–E
(runoff), and P/PE (actual/potential evapotranspira-
tion, i.e. available moisture), decreasing mean temper-
ature of the warmest month, and a cooling and/or
shortening of the growing season. These results are
consistent with modern analogues and with the syn-
chronicity between the rise in lake level in the Jura
Mountains and cooling oscillations in the Alps (glacier
advances and timberline declines) observed by MAGNY

(2004) and HAAS et al. (1998). They seem largely to cor-
relate with various palaeoclimatic records in Europe
and sites around the North Atlantic (provided that
time-control is good enough (MAGNY 2004).

1.4.5 Alpine foreland and Jura mountains

Lowland ecosystems are generally only sensitive to
high-amplitude climatic fluctuations, such as the ones
occurring during glacial-interglacial cycles. Several
studies of fossil biota or stable isotopes from lowland
sites in Central Europe suggest a temperature increase
at the onset of the Holocene of about 2–6°C (GRAFEN-
STEIN et al. 1999b); (ISARIN a. BOHNCKE 1999;
KORHOLA et al. 2000; LOTTER a. BIGLER 2000; LOT-
TER et al. 2000a). Hardly any biotic evidences exist 
for Holocene climatic fluctuations from lowland sites,
as these are too far away in climatic space from eco-
tonal situations. However, using timberline fluctuations
in the Alps and different climatic reconstructions from
sites on the Swiss Plateau, HAAS et al. (1998) identified
eight synchronous pre-Roman cold phases, i.e. at
9600–9200, 8600–8150, 7550–6900, 6600–6200,
5350–4900, 4600–4400, 3500–3200, and 2600–2350
radiocarbon years BP, which translate into 10700–
10200, 9600–9050, 8300–7700, 7450–7050, 6100–
5700, 5250–5050, 3750–3400, and 2650–2400 cal a
BP; they suggest an approximate 1000-year cyclicity of
Holocene climatic oscillations. In the Jura Mountains
MAGNY (1998) found several Holocene fluctuations of
lake levels. As these fluctuations coincided with fluctu-

ations in 14C and glacier fluctuations in the Alps, he
suggested that changes in solar activity and in ocean
circulation cannot be ruled out as forcing factors of
Holocene climatic changes.

Other examples for abiotic evidences of Holocene
climatic change are the detection of several short fluc-
tuations in the oxygen isotopes of ostracode valves from
a pre-Alpine lake in southern Germany amongst others
the 8200 cal a BP event (GRAFENSTEIN et al. 1998),
which is interpreted as caused by short weakening of
the thermohaline circulation through an interval of
freshwater input into the North Atlantic. TINNER and
LOTTER (2001) found a striking coincidence between
the 8200 cal a BP event and the onset of changes in the
vegetation composition in two annually laminated
Central European lakes, which was attributed to the
onset of moister conditions due to changed air-mass
trajectories.

LIVINGSTONE and HAJDAS (2001) presented different
cyclicities in the thickness of biogenic varves that they
attributed to solar forcing of the biological productivity
in the water column of Soppensee, a small lowland lake
on the central Swiss Plateau.

1.5 Central and north western Europe

Rapid climatic fluctuations of large amplitudes dur-
ing the last glacial/interglacial transition are well docu-
mented in north western Europe in pollen and lake sed-
iment data (e.g. ISARIN a. BOHNCKE 1999; LITT et al.
2001; BRAUER et al. 2000), whereas it is more problem-
atic to detect the attenuated changes during the
Holocene. In particular, quantitative reconstructions of
specific climatic parameters are difficult to achieve.
Therefore, changes in the hydrological cycle that are
considered as integrated responses to both temperature
and precipitation changes are key sources for tracing
climatic variability. Common measures of hydrological
changes are lake-level variations and bog evolution (e.g.
AABY 1976; MAGNY 1993a; STARKEL et al. 1996; VAN

GEEL et al. 1996). A less frequently utilized integrative
signal of climatic change are annual to seasonal varia-
tions in the sedimentation pattern of varved lake sedi-
ments such as the one from the Eifel maars. Long
varved records provide precise chronologies reaching
back even into the last glacial maximum (ZOLITSCHKA

et al. 2000). Past climatic oscillations are well reflected
in varve micro-facies and thickness changes (BRAUER et
al. 1999; BRAUER 2004). Time-series analyses of varve-
thickness data revealed periodicities similar to those
known from solar irradiation variations like the 11-year
Schwabe cycle and the 88-year Gleisberg cycle (VOS et
al. 1997).
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Thus it can be expected that also more pronounced
fluctuations and abrupt or gradual shifts leading to 
persisting changes are visible in varve micro-facies. In
the early Holocene two periods (11350–11000 and
10450–10250 varve a BP) with marked variations in
seasonal diatom blooms and detrital influx in the 
sediments from Holzmaar indicate short-term cold 
and wet climatic oscillations (BRATHAUER et al. 1999).
These phases correlate with events of increased 
ice-rafted detritus in the North Atlantic (events 8 and 
7 according to BOND et al. 1997). At 9700 varve a BP
a longer-lasting change in diatom assemblages coupled
with decreased erosion occurred within 150 varve
years. These changes coincide with a phase shift in 
the 11-year cycle in varve-thickness data (VOS et al.
2001). Both observations suggest a re-organisation of
the lake system that is not yet fully understood. The 
8.2 ka-event does not show a distinct signal in the maar
lakes. At Meerfelder Maar diatom abundances de-
creased at that time, but since the low-productivity
phase lasted for about 600 years it does not reflect an
event-type signal. A further gradual transition to colder
climatic conditions is documented in the Holzmaar
varves between 5800 and 5200 varve a BP by changes
in the diatom assemblages and related formation of
seasonal layers. One of the strongest climatic fluctua-
tions during the Holocene presumably occurred at
2650 varve a BP and has been frequently observed (VAN

GEEL et al. 1996). From this time on (Iron Age) the sed-
imentation pattern in the Eifel maar lakes is to a high
degree influenced by human activities in the catchment
(ZOLITSCHKA et al. 2003).

For a long time the cyclic climatic fluctuations in
north western Europe during the Holocene have been
related to changes of the North Atlantic thermohaline
circulation. More recently, previously suggested links to
solar variations (e.g. MAGNY 1993b; VOS et al. 1997;
VAN GEEL et al. 1998) appear to become more widely
accepted (BOND et al. 2001), although the mechanisms
influencing the climate system are still poorly under-
stood. The overall trend from a Mid-Holocene climatic
optimum towards colder and wetter conditions in the
Subboreal and Subatlantic might be linked to orbital
changes leading to decreasing summer and increasing
winter insolation. However, this can only partly explain
the more continental situation in north western Europe
with a pronounced seasonality in the early Holocene. It
is assumed that also the post-glacial sea-level rise with
the flooding of the southern North Sea and the estab-
lishment of a link to the North Atlantic between 9500
and 9000 cal a BP (BEETS a. SPEK 2000) played an im-
portant role for the maritime influence on north west-
ern Europe. Flooding of the North Sea Basin and sub-

sequent sea-level rise also affected fluvial activities
through a decreasing river gradient.

2 Climate variations and flood frequencies 
in the River Rhine catchment area since 1500

2.1 Climate trends and floods in the 20th century

In the 1990s numerous severe floods occurred in
Central Europe, for example at the River Rhine and at
the Mosel in December 1993 and January 1995, at the
Moldavia, at the Oder in July 1997 and at the Elbe
2002. Again, these events made it clear, that floods are
amongst the most disastrous natural hazards. For this
reason, flood-events regularly cause discussions about
their frequencies, tendencies and the changes in their
intensities (s. MENDEL et al. 1997).

In recent years, questions have arisen, whether hu-
man activities are responsible for the increased green-
house effect (e.g. BENDIX 1997) and what kind of
changes affect the catchment areas. Answers to these
questions can be found by comparing series of temper-
ature, precipitation and atmospheric circulation pat-
terns with series of severe flood-events.

Since the mid 19th century, climate development in
the catchment area of the Rhine can be evaluated on
the basis of official and standardized measuring data.
On a global as well as on a regional scale, this relatively
short period of about 150 years is still the only com-
monly recognized scale for characterizing climate de-
velopment.

In Central Europe, from 1891 to 1990 temperature
increase for all seasons was proven to be up to 1°C.
During winter, these values range between 0.5 and
1.0°C, during spring between 0 and 0.5°C and during
summer and winter also by up to 1.0°C (SCHÖNWIESE

et al. 1993). Even though, this warming is clearly rec-
ognizable in many places, it can neither be explained by
changing forcing factors nor can it be brought into a
simple context with large-scale circulation deviations
(SCHMUTZ et al. 2000). In the 1990s the global and 
regional warming trend has significantly accelerated.
Within the past 500 years, this recent warming is
unique in scale and structure for Central Europe 
(PFISTER 1999; GLASER 2001). In the northern hemi-
sphere the 1990s decade was the warmest in the past
millennium (MANN et al. 1999). In western Europe the
exceptional heat wave during the summer of 2003
caused many deaths and heavy economic losses – and
seems to resemble the event of 1540. Further effects of
global warming are the melting of Alpine glaciers
(MAISCH et al. 2000) and the premature disappearance
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of the ice cover on lakes and rivers that happens up to
two weeks too early. Moreover, it is also observed that
the vegetation period is up to 12 days longer.

During this century, in Switzerland, the annual pre-
cipitation has increased significantly at numerous sta-
tions, especially during the recent warm phase and par-
ticularly in winter (PFISTER 1992; WIDMANN a. SCHÄR

1997). In their paper the two authors show that the in-
crease in precipitation is mainly based on the activities
of weather patterns (higher temperatures and wind 
velocities) and not on a change in their frequencies.
Recent studies on historical circulation variability also
confirm that internal variations of circulation modes
are a major factor of atmospheric dynamics (BECK et
al. 2001; JACOBEIT et al. 2001). Thus, with respect to
the zonal circulation mode in winter, the transition
from the Little Ice Age to modern conditions is not pri-
marily reflected by frequency changes but rather by
long-term internal changes implying increases of vor-
ticity, intensity, temperature and precipitation across an
extended period from 1800 to 1930 (JACOBEIT et al.
2002).

In their precipitation trend study for Germany, for
the period from 1891–1990, RAPP and SCHÖNWIESE

(1996) clearly show a highly significant increasing trend
for winter precipitation in large parts of Southwest and
West Germany. Especially in the west and south-west of
Germany, that is to say regions important for the Rhine
catchment area, winter precipitation has increased by
about 30%. These findings are confirmed by a detailed
study of long-term changes of precipitation in Baden-
Württemberg (SÁNCHEZ PENZO a. RAPP 1997). These
changes go along with a corresponding increase of an-
nual flood discharge from 1891 on, for example at the
gauging station Cologne (MENDEL et al. 1997). In the
1980s and 1990s, the zonality above the Atlantic and
Europe has increased. At the same time the number of
weather patterns of long duration has increased, while
those of short duration have decreased (SCHMUTZ et al.
2000).

According to the latest IPCC-Report, evidence exists
that the frequency of strong precipitation events gener-
ally increases with global warming. This is in agreement
with the recent findings of PALMER and RÄISÄNEN

(2002). Especially during winter, flood levels and
frequencies should increase in many regions (IPCC II-
ES4). Until 2050 most climate change scenarios predict
an increase in the average annual discharge of about
10% north of the Alps (IPCC II-13.2.1.). Concerning
the precipitation, it should be of special importance 
to know how far south the jet-axis will reach, that is 
to say the corridor of the low pressure systems (WANNER

et al.).

2.2 The contribution of historical climate research

In this context we have to ask several questions :
– Are these developments part of a natural climatic

trend or really the result of a man-made climate
change?

– Which time span do we use for comparisons ?
– Since when do we have reliable data concerning

weather, climate and floods ?
– Which relationships exist between natural climate

variations and groups of years of increased floods or
few floods?

Up to a certain point answers to these questions can
be given by historic climate research. The discipline is
situated at the interface between climatology and envi-
ronmental history. Its goal is to reconstruct the course of
the weather, climate parameters (temperature, precipi-
tation) and large-scale weather patterns for the period
before official measuring networks were installed. Fur-
thermore, it studies the stress capacity of societies for cli-
mate variations and natural disasters and the changing
social representations of climatic phenomena.

In order to do this, it primarily uses data from histor-
ical documents and secondarily natural archives like
isotopes, sediments, pollen and tree rings (BUISMAN a.
ENGELEN 1998; PFISTER 1999, 2001; BRÁZDIL 2000;
GLASER 2001).

In Western and Central Europe climate observations
in historical documents exist since Carolingian time.
Looking at the amount, continuity and temporal reso-
lution of this material we can divide the past 1250 years
until the present into five periods:

1. before 1300: predominantly, descriptions of sin-
gularities and natural disasters.

2. 1300–1500: almost uninterrupted description of
summer and winter, partly spring and autumn.

3. 1500–1800: almost uninterrupted description of
monthly, partly daily weather.

4. 1680–1860: individual instrumental measure-
ments, beginning of short time measuring networks.

5. Since 1860: instrumental measurements within
national and international measuring networks.

This enumeration is to be understood accumula-
tively, i.e. older forms are overlapped but not substi-
tuted by newer ones. Within this subject, data concern-
ing precipitation and discharge are in the foreground of
discussion.

Beside contemporary written sources, systematic ac-
counts of the daily weather are of special importance
for the reconstruction of precipitation conditions. For
the River Rhine area such records exist since the end of
the 15th century. Daily observations can by evaluated by
counting and then standardizing phenomena like rain,
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snow, frost, degree of cloud cover, fog and subjective re-
marks like “hot”, “terribly cold”. Then the resulting
values have to be correlated with the respective mean
values of the next measuring station (GLASER 2001).

Data concerning the extends of floods can be ob-
tained by looking at contemporary records, flood
marks, more than two dozens for example at a house
situated in Wertheim in the confluence area of the
rivers Tauber and Main, as well as historical and recent
water level measurements (from the early 19th century
on) (DEUTSCH a. PÖRTGE 2001; GLASER 2001).

Historical climate data is interpreted and evaluated
by using a wide variety of methods, reaching from his-
torical source criticism to the application of statistical
procedures with a multitude of variables (PFISTER

1999; GLASER 2001).
A common procedure is the derivation of indices. In

order to do this, levels of intensity, that are expressed in
the records, are correlated with numerical values.
“Very wet”, for example, could have the value “+3”,
“wet” “+2”, “above average” “+1” and finally “nor-
mal” or “average” the value “0”. In this way one ob-
tains weighted indices that already represent semi
quantitative time series, which can be transformed into
estimate values for precipitation and temperature val-
ues by using regression functions (PFISTER 1999;

GLASER 2001). A similar procedure was developed in
order to identify classes of intensity for floods deduced
from historical document data (STURM et al. 2001).
Working with recent water level data, one is often con-
fronted with the problem that no official or scientifically
objective definition, other then the very general para-
phrase of “the river overflows its banks”, exists for the
term flood. In order to arrange data based on the de-
scription of flood damages and discharge data based on
water level measurements into a single comparable se-
ries, the monthly maxima of the daily discharge are
classified according their deviation from the average
maxima of the reference period 1901–1990. As a crite-
ria for the definition of the classes the deviation from
the mean value at one-, two- and three-fold standard
mean deviation was used; that is to say that the level of
highest intensity was classed with the maxima that sur-
passed the average maxima by more than the triple
standard deviation (STURM et al. 2001).

Historical climatology experienced a new dimension
through the cooperation with circulation dynamics spe-
cialists (JACOBEIT et al. 1998; WANNER et al. 2000;
LUTERBACHER et al. 2000, 2002a/b). Based on histori-
cal data seasonal and even monthly mean sea level pres-
sure grids have been reconstructed (JONES et al. 1999;
LUTERBACHER et al. 2002) enabling multivariate analy-
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ses of circulation dynamics for periods considerably 
extended into the historical past (e.g. JACOBEIT et al.
2001). Furthermore, historical climatology offers to
“climate modellers” times series that can be used 
for climate simulations and calibrations.

2.3 Climate trends and variations during the pre- and 
early instrumental period (1500–1860)

In the following the most important events from the
catchment areas of the Hochrhein and alpine Rhine
(PFISTER 1999), of the Main and Middle Rhine
(GLASER 2001) as well as for the Lower Rhine (BUISMAN

a. ENGELEN 1998, 2000; GLASER a. STANGL 2003) will
be summarized, in the course of which we will only 
differentiate according to summer and winter.

2.3.1 Winter

In the area of the Hochrhein and alpine Rhine, win-
ters during the “Little Ice Age” (until 1895) on average
were 0.4°C colder than during the reference period
1901–1960. Until 1650 this general tendency was over-
laid by phases during which winter was often mild
(1520–1545; 1602–1650), while during other years
(1565–1595) they were colder. After 1650 on average
the temperatures remained 1–2°C (1687–1698) below
the mean values of the reference period. Correlating
with the lower temperatures and as a result of frequent
“Bisenlagen”, during the period from 1530–1895 there
was on average less precipitation than from 1901–1960

(PFISTER 1999). In between 1560 and 1860 winters in
the Upper and Middle Rhine area were also signifi-
cantly colder than in the 20th century. The same true for
the periods 1571–1600, 1631–1660, 1681–1730 and
1751–1830. Only in the 20th century we get a longer
enduring phase of mild and humid winters, which leads
us into present day’s greenhouse climate (GLASER

2001).
In the Lower Rhine area, winters, with exception of

the years 1500–1550, 1625–1650, and 1700–1775 un-
til 1850 remained cold. The lowest temperatures were
reached during the “Late Maunder Minimum (LMM)”
between 1675 and 1700 (BUISMAN 1998, 2000) (Fig. 2).

2.3.2 Summer

In the area of the Hochrhein and alpine Rhine the
“Little Ice Age” can not be detected in the summer
temperature graph. On average the summers during
the period from 1530–1895 were as warm as those of
the period from 1901–1960. This comes as a surprise,
especially, if we consider the fact that a glacier’s mass
balance reacts, above all, to changes in summer
weather.

The connection to glacial history can be made more
obvious by looking at the two cool summer phases
which caused and accompanied, the two advances of
alpine glaciers in between 1580–1600 and 1820–1860
(ZUMBÜHL a. HOLZHAUSER 1988). The years 1718–
1729 and 1945–1952 stick out as periods with the
warmest and driest summers (PFISTER 1999).
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Fig 5: High water levels at Lake Constance in the period 1816–1999 (PFISTER 1999, updated)
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In the Upper and Middle Rhine area the past 5 cen-
turies were mainly characterized by cool phases with
the exception of the climate development during the
20th century. This is especially true for the years
1571–1591, 1690–1700 and 171?–1730. A comparison
of temperature and precipitation graphs shows, that
warmer phases usually are also the drier ones, whereas
cooler phases coincide with more humid periods (cf.
GLASER et al. 2000). In the Lower Rhine area cooler
phases dominate from 1525 until 1925, while the low-
est values are reached during the last quarter of the 16th

century as well as the first quarters of the 19th and 20th

century. On the other hand the summer of 1775–1800
(BECK 2000) and 1850–1875 were warmer than aver-
age (BUISMAN 1998, 2000) (Fig. 3).

2.4 Influence of atmospheric circulation on floods

The frequency of flood events in Central Europe
normally shows a clear interdecadal variability (WAN-
NER et al. 2004). The crucial question is if there exists a
significant relation between atmospheric circulation
and these frequencies. At least, the preconditioning
processes leading to heavy and devastating precipita-
tion events are known. First of all, air masses have to in-
corporate moist air over the large oceans through en-
hanced latent heat fluxes. These air masses have to be
transported to the continental surfaces along the storm
tracks of the midlatitude westerlies and forced to rain
out, mainly along frontal systems.

In Central Europe, two types of synoptic events lead
to strong floods:

(a) Local to regional events during the warmer sea-
son: In this case, heavy rain is related to low-pressure
gradients and unstable atmospheric conditions leading
to strong thunderstorms.

(b) Larger scale regional to semi-continental events
during the cooler season: Normally the Atlantic “storm
track” is shifted south and south-westerly to north-west-
erly flow with excessive rain persists over days or weeks.
In spring, such events are very often coupled with
snowmelt.

There is some evidence that periods with higher
flood frequencies in winter (e.g. during the mid 19th

century) are connected with a higher frequency of
the above mentioned circulation configuration with 
advective westerly weather types (JACOBEIT et al. 2003;
WANNER et al. 2004).

2.5 Development of flood frequencies

Since the second half of the 1990s, natural disasters
have become a major topic, maybe because of the over-

all impression that the world is haunted by such events
in shorter getting intervals. Whether this is because of
the greenhouse effect remains yet an open question.
From the Middle Ages on anomalies and natural disas-
ter have been recorded in chronicles. The more ex-
treme an event, the more frequent and detailed was it
described. The most extreme natural disasters of the
past, which are of special interest for today’s society,
can be relatively reliably reconstructed by means of ob-
servations found in historical documents. Until the 19th

century both catholic and protestant clerics interpreted
natural disasters as of God’s “practical sermons”.
The forces of nature were seen as God’s whip, with
which a wrathful God would punish his children, who
had strolled away from the right path (KEMPE a.
MAUELSHAGEN 2002).

The theological image of the biblical flood as a re-
venge was used to explain floods (KEMPE 1996). The
few studies, available today, give evidence to the fact,
that, during the period of “natural climate”, important
deviations in the medium-term frequencies of such
events occurred (BRÁZDIL et al. 1999; PÖRTGE a.
DEUTSCH 2000; STURM et al. 2001). Compilations of
historical Rhine floods – like those of other rivers in
Central Europe – allow us to identify periods with fre-
quent floods and periods with few floods, which often
occur simultaneously in Central Europe. Yet, differ-
ences become clear as well: explanations could be re-
gional climate variations and specifics and above all dif-
ferent and not simultaneously conducted engineered
changes during the recent period (Fig. 4).

It shows the medium-term course of 31-years run-
ning frequencies. From 1817 on, years were counted as
“flood years”, if water levels surpassed the mean value
(1901–1990) by 7.5 times (green graph) or 10 times (red
graph) standard deviation. At present, an international
research project is trying to identify the relations be-
tween singular phases of frequent or few floods and the
atmospheric circulation (STURM et al. 2001). In this
context southward shifts of the westerlies and north-
west European central lows with southwesterly flow
above Central Europe are confirmed on historical time
scales as major circulation patterns being important for
strong flood events during the winter season. On the
other hand, during particular periods of high flood fre-
quency in the historical past other than zonal circula-
tion regimes also contributed significantly to these ex-
treme events thus extending the spectrum of dynamic
conditions that has to be taken into account in context
with increased flood frequencies.

Historical time series can be used to determine long-
term developments and secular events – i.e. floods.
Among the greatest flood events for the Main and the
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Middle Rhine area are those of the years 1595, 1682,
1784 and 1845. These floods can also be identified at
the rivers Weser and Elbe, but not in the catchment
area of the Hochrhein or the alpine Rhine (Fig. 4?).

A good indicator for flood disposition are the water
levels of Lake Constance (Fig. 5?). This lake is not reg-
ulated and mirrors the numerous affluent in North-
and Middle Bünden as well as Vorarlberg. Early high
lake levels point to a abundant snow-break and/ or a
humid spring season. If, under these starting condi-
tions, heavy rainfalls occur, floods with damages are
likely. In between 1640 and 1770 no single high water
level was recorded, while during the 7 years from 1849
until 1855 it overflowed its banks four times. Between
1910 and 1999 no extremely high lake levels were
recorded.

2.6 Conclusions

Reconstructed temperature and precipitation condi-
tions make it clear, that, for the largest part, the climatic
development within the instrumental period since 1850
lies within the long-term natural climate variability
since 1500. Yet, according to the present findings, espe-
cially winter temperature development in the 20th cen-
tury features as a climatic anomaly, which in that 
dimension has no comparable equivalent during the
previous centuries.

It became also clear, that natural disasters in Central
Europe always happened. This is equally true for thun-
derstorms, storms and floods. Yet the appearance of
these disasters drastically changed during the past 500
years. Medium-term increases and decreases within a
range of 30 to 100 years were normal. By looking at
these phases, it became clear, that during some periods
of our historical climate development natural disasters
happened more frequently than during the past two
centuries. This is especially true for the severe floods
that happened between 1500 and 1750. Also, many
natural disasters happened during the period of the
Little Ice Age from 1550–1850.

Based on these findings, we have to assume, that,
regarding temperature and precipitation development,
a much higher natural variability exists concerning nat-
ural disasters than could be supposed by just looking 
at present day figures. These findings are especially re-
markable, because they concern a time, when mankind
did not yet cause climatic change.
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