HYDRO-CLIMATIC VARIABILITY IN SOUTHERN ECUADOR REFLECTED BY TREE-RING OXYGEN ISOTOPES

FRANZISKA VOLAND, DARWIN PUCHA and ACHIM BRÄUNING

With 5 figures and 5 tables
Received 22 May 2015 · Accepted 18 January 2016

Summary: Variations of stable oxygen isotopes in tree-ring cellulose are a widely used proxy to reconstruct hydro-climate variability in tropical and subtropical regions. We present the first $\delta^{18}O$ chronology from annual tree rings in tropical Cedrela montana trees growing in the mountain rain forest of the Podocarpus National Park (PNP) in southern Ecuador. The more than a century long data record (1885–2011) comes from up to 15 individual trees (1980–2005) and represents the best-replicated isotope tree-ring chronology from the tropics. In comparison with tree-ring width, stable isotope variations show considerably higher correlations between individuals and thus represent a more reliable climate proxy in this very humid environment. High teleconnections to other stable isotope chronologies from the Amazon lowland indicate a high degree of consistency of regional hydro-climate variations. The PNP $\delta^{18}O$ record is correlated with seasonal precipitation (January to April, CRU TS 3.21), frequency of wet days, and cloud cover over the Andean Cordillera Real. Spatial correlations indicate that the El Niño-Southern Oscillation (ENSO) has strong impact on tree-ring $\delta^{18}O$ variations. Sea Surface Temperatures (SSTs) of the Niño 3.4 region and Niño 4 region, and the Oceanic Niño Index (ONI) show strong positive correlations with Cedrela oxygen isotope ratios, whereas the ENSO precipitation index correlates negatively. The Niño 3.4 and 4 SST influence is stronger after 1960 than before, indicating a shift in the influence of the Pacific Ocean on moisture variations in the Ecuadorian Andes. In the same period, the positive correlation with oxygen isotope signals from Andean glacier ice cores ($r=0.2; p<0.05, 1894–1993$) increased strongly ($r=0.51; p<0.01, 1960–1993$). In conclusion, stable oxygen isotope series from tropical tree species can help reconstruct variations in the hydroclimate of the Andean mountains and their surrounding areas.

1 Introduction

The perhumid ecosystem ‘lower tropical mountain forest’ in southern Ecuador is characterized by a high number of vascular plant species and belongs to the “hottest” hotspots of global biodiversity

DOI: 10.3112/erdkunde.2016.01.05
ISSN 0014-0015
http://www.erdkunde.uni-bonn.de
lished). During recent years, numerous studies have documented the formation of annual tree rings in neotropical tree species (e.g. Schöngart et al. 2002; Wobes 2002; Brauning et al. 2009; Rozendaal et al. 2010; Stahl et al. 2010; Volland- Voigt et al. 2011; Brienen et al. 2012; Soliz-Gamboa et al. 2012), using the wood parameters tree-ring width, and the variations of stable oxygen and carbon isotopes in wood (δ18O and δ13C). Thus, tree-ring series with their high temporal resolution and dating accuracy have gained increasing importance as archives for (paleo-) climate investigations in tropical South America.

The availability of climate data for the Andean Cordillera Real is rather poor in spatial resolution and length of data series, thereby limiting our understanding of regional past climate variability. These circumstances underline the need of reliable paleoclimate proxies to reconstruct past climate variability and to better understand stable isotope fractionation processes in different archives, such as stable oxygen isotope ratios in precipitation (Villacis et al. 2008), soil water (Goller et al. 2005), and ice cores (Thompson et al. 2000; Vimeux et al. 2009). The first two types of records are often short-term and incomplete. In contrast, ice core data are sometimes very long, but current data is often missing (Thompson et al. 2013). Therefore, tree-ring oxygen isotope values are a promising tool for high resolution (annual) climate reconstructions for past centuries (Zuidema et al. 2013). For tropical South America, Ballantyne et al. (2011) and Brienen et al. (2012) presented the first studies about long-term and large-scale atmospheric processes and precipitation variability derived from tree-ring oxygen isotopes.

The variation of tree-ring δ18O is determined (i) by the amount and isotopic composition of precipitation, (ii) by the enrichment of leaf water 18O caused by transpiration, and (iii) by the 18O fractionation processes during the biosynthesis of carboxyl oxygen and the post-photosynthetic isotope exchange during the formation of tree-ring cellulose (Sternberger and De Niro 1983; Sternberger et al. 1986; McCarroll and Loader 2004; Liu et al. 2014; Gessler et al. 2014; Treydte et al. 2014). Precipitation has a strong influence on tree-ring δ18O. Amount and isotopic composition of precipitation in the Andean mountains is in turn influenced by the origin of the moist air mass and by landscape topography (Sturm et al. 2007). Precipitation inflow from the Amazon Basin dominates the isotopic signal in ice cores from the South American Andes (Hoffmann et al. 2003), while Pacific sea surface temperature anomalies (Vuille et al. 2003), and the El Niño-Southern Oscillation (ENSO) phenomenon (Bradley et al. 2003) also influence the signal. During the air-mass-transport over land, heavy isotopes condense faster (Dansgaard 1964) and hence an air mass travelling further inland becomes increasingly depleted. The degree of depletion depends on increasing altitude, distance to the origin source, and intensive rainfall events (the so called “amount effect”). More depleted water vapour (more negative δ18O) occurs during wetter years compared to drier years, resulting in inter-annual variations of the isotope signal in high-resolution proxies.

Numerous studies have successfully reconstructed regional precipitation signals from tree-ring δ18O series, e.g. in Thailand (Poussart and Schrag 2005) and Indonesia (Schollean et al. 2013). A number of studies also detected signals of El Niño-Southern Oscillation (ENSO) variability in tree-ring δ18O series, e.g. in South-East Asia (Liu et al. 2014; Xu et al. 2011, 2013a, 2013b; Sano et al. 2012; Zhu et al. 2012) or South America (Brienen et al. 2012).

So far, however, no study has yet been conducted in the humid (annual precipitation > 2000 mm) mountain forest of the tropical Andes. In the present study we present the first results on climate signals derived from tree-ring oxygen isotopes in Ecuadorian Cedro (Cedrela montana). We hypothesized that tree-ring δ18O series share a strong common signal between tree individuals, and therefore provide a strong environmental signal in a tree population. We tested if tree-ring δ18O is correlated to climate parameters and other stable isotope proxies, including meteoric precipitation, sea surface temperatures, different ENSO indices, as well as δ18O ice core records from the Andes, which share the same origin of moisture as our study area.

2 Study site, local climate and species

The study site “Reserva Biológica San Francisco” (RBSF 1800–3180 m a.s.l., 3.58°S, 79.04°W, Fig. 1) is located in the Rio San Francisco valley at the northern slope of the Podocarpus National Park (PNP) in southern Ecuador. The local vegetation can be classified as an evergreen montane forest (Balslev and Ollgaard 2002) or as lower montane rainforest (Homeier 2004).

Local climate data within a distance of 1 km from the sampling sites has been collected since 1998. In this data mean annual air temperature is 15.3 °C
and mean annual relative humidity amounts to 83%. Annual precipitation amounts circa 2000 mm and varies between 1600–2100 mm (Emck 2007; Bendix et al. 2008; Rollenbeck and Bendix 2011). The region is characterized by slight seasonal variations in precipitation (Fig. 2), allowing a distinction of three hydrological seasons: (i) During January to April humid air masses from NE directions blow over the Amazon lowland with a ~65 % frequency. Southerly winds bring ca. 30 % of precipitation during this season, in which average precipitation ranges between 500–700mm (Rollenbeck and Bendix 2011). (ii) Between May and August wind directions from NE prevail with up to 95 % frequency. Rainfall amounts to as much as 1000 mm. (iii) From September to December average precipitation ranges between 250–420 mm. Furthermore, the highest temperatures of the year are reached during October and November. This short warm and drier period is called ‘Veranillo del Niño’ and is caused by the increasing influence of wind directions from S (~50 % frequency) and decreasing wind from NE (~45 % frequency), leading to a reduced cloud cover and to more drier days with high irradiation (Bendix et al. 2008; Richter et al. 2009; Rollenbeck and Bendix 2011).

The study species Cedrela montana (Moritz ex Turcz) is a rather shade tolerant and deciduous tropical broad-leaved tree species, commonly growing in altitudes between 1700–3000 m a.s.l. in Ecuador, Peru, Venezuela, and Colombia (Smith 1960; RNJB 2008). C. montana (Meliaceae) belongs to the mid-successional group of trees, reaches up to 30 m in height and produces a very hard and durable wood (Nieto and Rodriguez 2003; Brauning et al. 2009; Günther et al. 2009; Kuptz et al. 2010).

3 Sample collection and preparation, cross-dating, cellulose extraction and isotope analysis

Wood samples of C. montana were collected as increment cores (5 mm diameter) at the RBSF (Fig. 1) at an elevation of ca. 2000 m a.s.l. A first version of the Cedrela ring width chronology (Brauning et al. 2009) was extended and updated (unpublished) and now covers the time period 1840–2011. Ring width measurements were carried out using a LINTAB 5 measurement device (Rinntech, Germany) with a precision of 0.01 mm.

Tree cores for oxygen isotope analysis were selected with the following criteria: (i) occurrence of no or only few missing or false rings, (ii) annual rings with straight borders to enable precise separation of annual rings with a razor blade under a binocular microscope and (iii) the ring-width curves of the sampled trees show high correlations to the master chronology, ensuring correct dating of each individual ring. Hence, the selected trees give a good representation of the total sample population. In total, 15 trees, aged up to 120 years, were selected.

To avoid a possible influence of wood chemicals on the oxygen isotope signal we extracted cellulose from the whole tree rings following the chemical treatment described by Wieloch et al. (2011). Afterwards, we homogenized the cellulose with an ultrasonic unit and ca. 300 µg of the freeze-dried material was loaded into silver capsules (Laumer et al. 2011). The tree-ring cellulose was pyrolyzed in an high temperature oven (Hekatech, Germany) and subsequently transferred to an IRMS (Isotope-ratio mass spectrometer, Delta V Advantage, Thermo Scientific) to detect the $^{18}O/^{16}O$ ratio. The ^{18}O values are expressed relative to the VSMOW (Vienna Standard Mean Ocean Water) standard and have an analytic precision of 0.05 ‰ (IAEA 601) and 0.14 ‰ (IAEA 602) and 0.1 ‰ for the cellulose standard (Aldrich). The oxygen isotope values are presented in the δ notation as per mil (%) and were calculated as $\delta^{18}O_{\text{PNP}} = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000$.

Fig. 1: Locations of the Podocarpus National Park (PNP) in southern Ecuador with study region Reserva Biológica de San Francisco (RBSF), and GNIP (Global Network of Isotopes in Precipitation) station Izobamba
4 Datasets and data analysis

Since the local climate data available were too short for statistical calibration of the tree-ring data, we used monthly climate data from Climate Research Unit (CRU) time-series (TS) Version 3.21 (Harris et al. 2014) from the region 3.75°S, 79.25°W (Cordillera Real). Monthly values of the El Niño-Southern Oscillation precipitation Index (ENSO prec., 1979–2009), sea surface temperatures (SSTs) from the El Niño 3.4 (5°S–5°N, 170°–120°W) and 4 (5°S–5°N, 160°E–150°W) regions (1870–2011), and the 3-month running mean of the Oceanic Nino Index (ONI) are from the National Oceanic and Atmospheric Administration (NOAA; Hörling et al. 2001; Rayner et al. 2003). The ONI is an indicator for El Niño events and reflects Pacific Ocean conditions at the equator, where positive/negative values indicate warm/cold temperatures, respectively. Isotope values in precipitation δ¹⁸O_prec from Izobamba (0.37°S, 78.55°W) were taken from the Global Network of Isotopes in Precipitation (IAEA/ WMO 2015) and were downloaded from Water Isotope System for Data Analysis, Visualization and Electronic Retrieval (WISER). Oxygen isotope data from Peruvian glacier ice cores of Huascarán and Quelccaya were taken from Paleoclimatology Datasets from Thompson et al. (1995, 2013, downloaded via NOAA).

We calculated all Pearson correlation coefficients with IBM SPSS Statistics 22. Because of the lack of normal distribution in the interval-scaled data we also calculated Spearman rank correlation coefficients. However, since all results for Spearman’s correlations were confirmed by Pearson correlations, we do not show Spearman’s rank correlations in the following results. Linear regressions between δ¹⁸O_prec and δ¹⁸O_PNP were carried out with Origin 9.1G. To minimize errors, only years without lacking monthly values in the δ¹⁸O_prec were considered. For calculating annual means of δ¹⁸O_prec for years missing less than 33% of values, we filled the gaps by averaging the monthly values before and after the missing month (Brienen et al. 2012).

Raw ring width curves were transferred into dimensionless tree-ring index series to remove age-related growth trends. The transformation of raw ring width curves into detrended (spline with 50-year bandwidth to preserve multi-decadal variability in the resulting index curves) dimensionless tree-ring index series and the expressed population signal (EPS) was computed with R package ‘dplR’ (Bunn 2008). Detrending followed by the “classic nonlinear model of biological growth” described by Bunn and KorpeLA (2014, 6). As indicator for inter-series correlation between individual tree-ring δ¹⁸O series included in the final chronology, and for chronology reliability, the mean correlation between all isotope series (Rbar) and the expressed population signal (EPS), which is a measure of chronology reliability (Wigley et al. 1984), were computed for running 20-year windows.

5 Results

5.1 Characteristics of the stable isotope chronology

The oldest C. montana tree displayed rings as far back as 1885; however, a replication of at least three individuals in the final δ¹⁸O_PNP chronology was reached from 1905. The arithmetic mean of the δ¹⁸O_PNP chronology for the period 1905–2011 (tree individuals) is 26.03‰; with values for individual years ranging from 23.8‰ to 27.9‰ (Fig. 3). The long-term δ¹⁸O_PNP trend showed a very weak increase of 0.25‰ over the whole study period. Our tree-ring oxygen isotope chronology showed significant inter-series correlations between the single tree isotope series and a robust chronology signal indicated by Rbar statistics (0.18–0.63 from 1938–2011) and EPS (0.85–0.92 from 1938–2011, Fig. 3). Due to low sample replication, values of Rbar and EPS of the chronology are rather low before 1938; hence the chronology prior to 1938 would be improved by finding more old trees. We also tested the individual δ¹⁸O tree-ring series chronology for trends related to tree age (Esper et al. 2010), but no trend related to tree aging was found, making us confident that detected variations of the stable isotope chronology are related to envi-
environmental changes. Therefore, the final tree-ring isotope chronology can be considered to provide robust estimates of local as well as regional environmental changes since 1938.

5.2 Correlations between tree-ring isotopes and climate parameters

We found no significant correlation between the variation in tree-ring $\delta^{18}O_{\text{PNP}}$ and annual or seasonal mean of precipitation ($r=-0.13$), relative humidity ($r=-0.29$), temperature ($r=-0.38$), or irradiation ($r=-0.2$) related to the local climate station data for the period 1998–2011 (detailed results not shown). However, when using CRU TS 3.21 (region 3.75°S, 79.25°W) gridded climate data, the amount of precipitation, cloud cover and wet day frequency are significantly related to $\delta^{18}O_{\text{PNP}}$ (Tab. 1). The months of the main growth period of $C.\montana$ (January to April) showed the strongest negative correlations. All correlation coefficients increased when the recent time period (1960–2011) was used as compared to the whole century time period (1901–2011); e.g. January to April wet day frequency from $r=-0.28$ to $r=-0.42$ (both $p<0.01$). For cloud cover, data showed for the long period (1901–2011) a significant January to April $r=-0.26$ ($p<0.01$) correlation. We also tested for the time period 1901–1959 but no significant correlations between $\delta^{18}O_{\text{PNP}}$ and climate parameters were found. After a peak around 1980, the $\delta^{18}O_{\text{PNP}}$ values decreased while cloud cover simultaneously increased (Fig. 5) until the strong La Niña event 1999–2000. Cloudiness dropped until 2005 and slightly increased again, showing opposite trends to the $\delta^{18}O_{\text{PNP}}$ chronology.

5.3 Teleconnection to other stable isotope records and ENSO

Tree-ring width and $\delta^{18}O_{\text{PNP}}$ chronologies of the studied trees were slightly negatively correlated ($r=-0.17$; $p<0.06$; $n=124$), indicating different climatic forces on the two wood parameters. Since tree roots take up soil water without fractionation of soil water $\delta^{18}O$, McCARROLL and LOADER (2004) nominate precipitation $\delta^{18}O$ as a dominant environmental signal in tree-ring $\delta^{18}O$. The location of our study trees on a steep slope with a good drainage and hence without influence of stagnant ground water, gave us reason to hypothesize that tree-rings reflect variations in precipitation $\delta^{18}O$. To test this, we correlated monthly and annual data of the $\delta^{18}O_{\text{PNP}}$ with $\delta^{18}O_{\text{prec}}$ from Izobamba (1973–2008, not continuous, ca. 29% data missing; Tab. 2).
We found a significant positive relationship for precipitation of the annual mean and for the drier season month November (‘Veranillo del Niño’; Richter et al. 2009; Tab. 2; Fig. 4). During the less humid period the major influence of δ18Oprec is verifiable, while in the other months no significant correlations occur. To verify the detected relationship, we tested the correlations between δ18Oprec from Izobamba and ENSO parameters (Tab. 3).

We compared our results with other available hydroclimate archives located around the Amazon Basin, including δ18O from high-elevation ice cores from the central Andean glaciers Quelccaya (13.56°S, 70.50°W; 5670 m a.s.l.) and Huascarán (9.06°S, 77.36°W; 6048 m a.s.l.) (Thompson et al. 1995, 2013). We found positive correlations between δ18O_PPN and the Huascarán ice cap, which is located closer to our study site but in higher elevation than Quelccaya. Both glaciers receive

Tab. 1: Pearson correlation coefficients between δ18O_PPN and CRU TS 3.21 data (region 3.75°S, 79.25°W) for wet day frequency, cloud cover, and precipitation

<table>
<thead>
<tr>
<th></th>
<th>wet day frequency (days)</th>
<th>cloud cover (%)</th>
<th>precipitation (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>previous September</td>
<td>-0.16</td>
<td>-0.25</td>
<td>-0.19*</td>
</tr>
<tr>
<td>previous November</td>
<td>-0.19*</td>
<td>-0.35*</td>
<td>-0.10</td>
</tr>
<tr>
<td>previous December</td>
<td>-0.18</td>
<td>-0.23</td>
<td>-0.08</td>
</tr>
<tr>
<td>previous annual mean</td>
<td>-0.23*</td>
<td>-0.41**</td>
<td>-0.11</td>
</tr>
<tr>
<td>January</td>
<td>-0.27**</td>
<td>-0.37**</td>
<td>-0.22*</td>
</tr>
<tr>
<td>February</td>
<td>-0.31**</td>
<td>-0.42**</td>
<td>-0.17</td>
</tr>
<tr>
<td>March</td>
<td>-0.26**</td>
<td>-0.35*</td>
<td>-0.22*</td>
</tr>
<tr>
<td>April</td>
<td>0.08</td>
<td>-0.04</td>
<td>-0.21*</td>
</tr>
<tr>
<td>May</td>
<td>-0.14</td>
<td>-0.09</td>
<td>-0.22*</td>
</tr>
<tr>
<td>June</td>
<td>-0.06</td>
<td>-0.16</td>
<td>-0.15</td>
</tr>
<tr>
<td>September</td>
<td>-0.11</td>
<td>-0.09</td>
<td>-0.12</td>
</tr>
<tr>
<td>October</td>
<td>-0.05</td>
<td>0.00</td>
<td>-0.20*</td>
</tr>
<tr>
<td>current annual mean</td>
<td>-0.25**</td>
<td>-0.33*</td>
<td>-0.24*</td>
</tr>
<tr>
<td>January to April</td>
<td>-0.28**</td>
<td>-0.42**</td>
<td>-0.26**</td>
</tr>
<tr>
<td>May to August</td>
<td>-0.13</td>
<td>-0.16</td>
<td>-0.19*</td>
</tr>
</tbody>
</table>

p<0.01, *p<0.05

Tab. 2: Pearson correlation coefficients between Izobamba δ18Oprec and δ18O_PPN (1973–2008)

<table>
<thead>
<tr>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Annual Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.44</td>
<td>0.38</td>
<td>0.00</td>
<td>0.21</td>
<td>0.33</td>
<td>0.06</td>
<td>0.01</td>
<td>-0.22</td>
<td>0.18</td>
<td>0.28</td>
<td>0.70**</td>
<td>0.30</td>
<td>0.57**</td>
</tr>
</tbody>
</table>

p<0.01
moisture from the Amazon basin (Thompson et al. 2013) and are therefore impacted by the same dominant wind direction as our study site in southern Ecuador. Correlations are stronger for the period after 1960 than for the whole period 1885–2009 covered by our 18O-chronology (Tab. 4).

The main factors of inter-annual variation of precipitation in the study area are the humid air masses from the Amazon basin transported by the tropical easterlies (Rollenbeck and Bendix 2011). In turn, the moisture conditions in the Amazon basin are influenced by ENSO (Brienen et al. 2012). For the period after 1960, we found a positive correlation between δ18O_PNP and SSTs in the El Niño 3.4 and 4 regions in the equatorial Pacific (Tab. 5). Weak and non-significant correlations occur for the time period 1885–2011 for both El Niño 3.4 and 4 regions. The strongest impact on δ18O_PNP occurs during austral summer from previous October to February, when correlations ranged between 0.28 (p<0.05, February El Niño 3.4, 1960–2011) to 0.48 (p<0.01, February El Niño 4, 1975–2011) (Tab. 5). The ONI (1950–2011) also showed a strong positive correlation during previous December to recent February. Contrary, the ENSO precipitation index showed strong negative correlations with the oxygen isotope chronology for the time period 1979–2011. Moreover, strong La Niña events like 1973–1976, 1999–2000, and 2010–2011 are traceable in the δ18O_PNP chronology by lower δ18O values related to the higher amounts of precipitation in the Andean mountains (Fig. 5).

Tab. 3: Pearson correlation coefficients between Izobamba δ18O_prec and ENSO (1979–2008)

<table>
<thead>
<tr>
<th>ENSO prec. Index</th>
<th>El Niño 3.4</th>
<th>El Niño 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ18O_prec</td>
<td>-0.49*</td>
<td>0.45</td>
</tr>
</tbody>
</table>

*p<0.05

Tab. 4: Pearson correlation coefficients between δ18O_PNP and oxygen isotopes from ice cores of Andean glaciers in Peru

<table>
<thead>
<tr>
<th>Quelccaya</th>
<th>Huascarán 1</th>
<th>Huascarán 2</th>
<th>Mean Huascarán</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ18O_PNP</td>
<td>0.19*</td>
<td>0.40*</td>
<td>0.16</td>
</tr>
</tbody>
</table>

**p<0.01, *p<0.05

Tab. 5: Pearson correlation coefficients between δ18O_PNP and sea surface temperatures in El Niño 3.4 and 4 regions, ENSO precipitation Index and Oceanic Niño Index (ONI)

<table>
<thead>
<tr>
<th></th>
<th>El Niño 3.4</th>
<th>El Niño 4</th>
<th>ENSO prec.</th>
<th>ONI³</th>
</tr>
</thead>
<tbody>
<tr>
<td>previous September</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>previous October</td>
<td>0.32*</td>
<td>0.28*</td>
<td>0.33*</td>
<td></td>
</tr>
<tr>
<td>previous November</td>
<td>0.34*</td>
<td>0.28*</td>
<td>0.36*</td>
<td></td>
</tr>
<tr>
<td>previous December</td>
<td>0.31*</td>
<td>0.38*</td>
<td>0.34*</td>
<td>0.41*</td>
</tr>
<tr>
<td>January</td>
<td>0.31*</td>
<td>0.38*</td>
<td>0.35*</td>
<td>0.45**</td>
</tr>
<tr>
<td>February</td>
<td>0.28*</td>
<td>0.37*</td>
<td>0.35**</td>
<td>0.48**</td>
</tr>
<tr>
<td>March</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January to April</td>
<td>0.11</td>
<td>0.28*</td>
<td>0.34*</td>
<td>0.17</td>
</tr>
</tbody>
</table>

**p<0.01, *p<0.05

1 Sea Surface Temperature
2 El Niño – Southern Oscillation precipitation Index
3 Oceanic Niño Index
Fig. 5: From top to down: time series of the $\delta^{18}O_{\text{PNP}}$ chronology, data from Quelccaya and Huascarán 1 and 2 as well as the mean of $\delta^{18}O_{\text{ice}}$ values, precipitation and cloud cover from CRU TS 3.21 and January to April mean of ENSO precipitation Index as well as El Niño 4 SST. Bold lines show smoothed data series with a 10-year FFT filter.
6 Discussion

The $\delta^{18}O$ values of the 15 studied *C. montana* trees significantly correlated between each other and showed a strong common signal (Fig. 3). The highest EPS occurred after 1930, with minimum values around 1960. This could be a result of dating errors of some individual rings during the juvenile growth phase and hence a misdating of measured oxygen isotopes. Compared to other studies, the strength of our common $\delta^{18}O$ signal (mean EPS = 0.86 1938–2011) is slightly higher than reported for trees from Cameroon (mean EPS = 0.74 1930–2010; Van der Sleen et al. 2015) and Laos (mean EPS = 0.8 1951–2001; Xu et al. 2011), but marginally lower than for trees from Bolivia (mean EPS = 0.93 1900–2001; Brienen et al. 2012) or Indonesia (mean EPS = 0.9 1900–2007; Schollean et al. 2013). A possible explanation is the lower climate variability at our study site, which has continuously high precipitation and a relatively low interannual variability of $\delta^{18}O_{\text{PnP}}$ compared to other studies (Poussart and Schrag 2005).

The long-term $\delta^{18}O_{\text{PnP}}$ increasing trend of 0.25 % from 1885 to 2011 (Fig. 5) is weaker than trends reported from Bolivia (Brienen et al. 2012), Cameroon (Van der Sleen et al. 2015), Thailand (Poussart and Schrag 2005), Laos (Xu et al. 2011), and Vietnam (Sano et al. 2012). In South East Asia, the stronger increase is in line with a weakening of the Asian Monsoon (Poussart and Schrag 2005; Xu et al. 2011). In Africa, the great Sahel drought from 1970 to 1990 influenced the long-term trend in tree-ring $\delta^{18}O$ (Van der Sleen et al. 2015). For South America, a positive trend of $\delta^{18}O$ in climate proxies is reported by Thompson et al. (2013) for $\delta^{18}O$ in ice cores and for trees in the Amazon basin (Brienen et al. 2012). This may point to an overall increasing temperature (3K relative to the average of 1980–1999) trend together with a slight increase in rainfall (+ 8 %) and cloud cover (+4 %) over the Andes in southern Ecuador (Meehl et al. 2007; Gloor et al. 2013; Peters et al. 2013).

We did not find any influence of biological tree age on $\delta^{18}O_{\text{PnP}}$ as it was reported in other studies (e.g. Kähmen et al. 2011; Barbour 2007; Esper et al. 2010). A possible explanation may be the low variability of measured relative humidity and temperature, and the resulting small vapor pressure deficit experienced by trees at the study site. Age-effects strongly depend on site conditions and species (Van der Sleen et al. 2015). No age-related long-term trend in $\delta^{18}O_{\text{PnP}}$ was found (Fig. 3), which is consistent with numerous other studies (e.g. Van der Sleen et al. 2015; Brienen et al. 2012; Zhu et al. 2012; Sano et al. 2012; Xu et al. 2013b).

To quantify the effects of leaf transpiration on the $\delta^{18}O$ variation in tree-rings, we tested the correlations of local amounts of precipitation, irradiation, temperature, relative humidity, and vapor pressure deficit with tree-ring oxygen isotopes (1998–2011). The detected relationships were not statistically significant; hence we conclude that the influence of meteoric precipitation composition is higher for our studied trees than the local climate. Van der Sleen et al. (2015) also did not find strong correlations between local climate signals (e.g. precipitation, temperature) and tree-ring $\delta^{18}O$ in *Eiendendrophagma nitile* in Cameroon. These trends indicate a strong influence of global circulation and regional climate on $\delta^{18}O$ variation in tropical tree-rings.

The significant correlations with the grided CRU TS 3.21 data suggested that under the local per humid conditions, trees store the regional ^{18}O precipitation signal in their cellulose (Tab. 1). The trees rather reflect the water-vapor-transport over the Andes than the stationary precipitation amount at the site, as found by other studies (Van der Sleen et al. 2015; Brienen et al. 2012; Poussart and Schrag 2005; Xu et al. 2011, 2013a, b; Sano et al. 2012). Low correlation coefficients with wet day frequency and precipitation may partly also be a result of poor quality and spatial resolution of meteorological data prior to 1960. The findings, that tree-ring oxygen isotopes are controlled by humidity (correlations to CRU TS 3.21 precipitation) suggested that the amount of precipitation during January to April and the entire year influenced $\delta^{18}O_{\text{PnP}}$ very strongly. Periods of less rainfall and higher irradiation go hand in hand with higher $\delta^{18}O_{\text{PnP}}$ values, for instance during 1950s and the 1980s. The decreasing trend of $\delta^{18}O_{\text{PnP}}$ since 1980 is in line with an increasing precipitation rate and cloud cover in the region. However, the declining trend reversed in 2000, values reached a maximum 2005 and thereafter, moisture conditions within the atmosphere increased again.

Goller et al. (2005) investigated $\delta^{18}O$ in precipitation within the RBSS from September 2000 to August 2001. The annual RBSS $\delta^{18}O_{\text{preo}}$ values range between -8 % and -16 %. During January to April, $\delta^{18}O_{\text{preo}}$ values decrease from -8 % to -16 %, then increase continually to -8 % (August, with main wind direction NE from the Amazon Basin) and thereafter decrease slightly to -10 % to -9 % in November/December. This observed annual cycle is also shown by the annual variation of the Izobamba $\delta^{18}O_{\text{preo}}$ val-
ues (Fig. 4, Tab. 3). In fact, the meteoric δ²⁸O values are related to different air-masses brought into the study area by a seasonal change of dominant wind directions (Rollenbeck and Bendix 2011). Inflows between September and April are balanced between southerly and northerly directions, whereas from May to August, northerly wind directions dominate. Westerly and easterly winds deliver equal portions of precipitation (Rollenbeck and Bendix 2011). Hence, it appears that δ²⁸O in precipitation from westerly winds (Pacific) more reflected in tree ring δ¹⁸O prep ratios, especially in the drier season.

The δ¹⁸O values from the Andean glaciers demonstrate the dominant inflow of Amazon air masses at the 500 and 850 hPa level throughout the year. The ice core oxygen isotope records show strong year-to-year fluctuations in comparison to δ¹⁸O PNP (Fig. 5, Tab. 4). This is caused by the ascending air masses on the Andean mountain chain and the following δ¹⁸O rainout process (Thompson et al. 2000; Vuille et al. 2003). The observed high correlations between δ¹⁸O PNP and δ¹⁸O ice demonstrate the intense influence of Amazon moisture on the trees within the lower montane rainforest. Also decadal variations of δ¹⁸O ice from Quelccaya records are traceable within the tree ring oxygen isotopes (Thompson et al. 2013).

Moreover, we found stationary correlations to El Niño 4 SST, e.g. for 1955–1985 (Tab. 5), which coincided with the shift of the Pacific Ocean climate regime (Mantua and Hare 2002). The δ¹⁸O PNP is also influenced by the “Pacific moisture”, as discussed in the comparison with meteoric precipitation δ¹⁸O from Izobamba. The detected effect of rainfall amount and composition on the isotopic composition is in accordance with the investigations of Sturm et al. (2007) and Vuille et al. (2005). Vuille et al. (2005) pointed out that both, tropical Pacific and tropical Atlantic atmospheric circulation patterns affect precipitation and δ¹⁸O variability over the Andes. The influence from the lower to the upper troposphere increases. Spatial and temporal variations of δ¹⁸O prep strongly differ between seasons. During austral summer, isotope variations in the Andes are controlled by air-mass-transport from the Amazon basin (Sturm et al. 2007). Vimeux et al. (2009) reported enriched δ¹⁸O values during El Niño events and depleted δ¹⁸O values during La Niñas in ice core records of the Andean glaciers. This is reflected in the tree-ring oxygen isotope values, however, with varying strength.

Correlations of the δ¹⁸O PNP in the Cordillera Real and the ENSO precipitation Index as well as the SSTs of El Niño 3.4 and 4 regions and the ONI indicate (Tab. 5) a large-scale atmospheric circulation control of the regional climatic conditions. In different tropical regions around the globe, an ENSO effect on oxygen isotope variations in tree-rings was found (Poussart and Schrag 2005; Anchukaitis et al. 2008; Xu et al. 2011, 2013a, b; Brienen et al. 2012; Sano et al. 2012; Zhu et al. 2012). The ENSO influence on our isotope records was especially strong in the 1960s, whereas during the first half of the 20th century the influence was weak or not significant. A reason could be the lower variance of ENSO in the CRU TS data, because data before 1961 are reconstructed from the 1961–1990 ‘normal values’. In addition, the positive relationship between δ¹⁸O PNP and Pacific SSTs (Tab. 5) points to an effect on the austral summer season climate in RBSF by the Pacific westerlies. However, our results indicated that tree-ring δ¹⁸O PNP can be used to reconstruct single ENSO (SSTs) events during the season January to April.

While El Niño events did not stand out in the isotope chronologies, La Niña events were represented by pronounced δ¹⁸O PNP minima, which is in line with studies in Laos (Xu et al. 2011, 2013b) and Cambodia (Zhu et al. 2012). The strong La Niña event 1973–1976 represents the minimum value in the whole chronology (Fig. 5). Different authors described this event as a shift in the climate regime of the Pacific Ocean (Deser et al. 2004; Zhu et al. 2012) from a “warm” Pacific Decadal Oscillation (PDO) starting 1976/77 and lasting until the strong La Niña 1999/2000 (Mantua and Hare 2002). The “warm” PDO was related to a wetter, warmer, and cloudier period over the Andes.

7 Conclusions and perspectives

In this paper, we presented a new tree-ring oxygen isotope record composed of fifteen individual C. montana trees from the Cordillera Real in the Andes. The δ¹⁸O PNP record correlated to precipitation and moisture conditions during the last century at regional and continental scales. This connection is established by the following proxies: SSTs of the tropical Pacific, ENSO precipitation Index and PDO. Considering that C. montana forms annuals rings, has both the potential for long life and a wide geographic distribution, makes it a useful species to reconstruct climate in the Andes. The isotopic signal suggested that rather than local climatic effects, water-vapor transport from the Amazon basin into the Andes on the one hand, and the Pacific circulation on the other hand, control stable isotope variations in mountain forest trees. The oxygen
isotope ratios in tree-rings documented the averaged isotopic composition of the meteoric rainfall for the year of growth and showed significant correlations with Andean glacier ice core records. One of the most important results is the large-scale control of 18O by ENSO, with an increasing influence during the last decades, suggesting changing atmospheric circulation processes over the Andes. The last “warm” PDO period is detectable within the 18O chronology. However, the oxygen isotope trend increased slightly (0.25 %) during the studied period from 1885–2011. A higher temporal resolution of intra-annual 18O variability in tree-rings (e.g. Poussart and Schrag 2005; Anchukaitis et al. 2008) is a possible tool to gain better insight into changing seasonal regional circulation patterns.

Thus, we encourage the establishment of an ENSO-sensitive tree-ring network within the Andes to improve our understanding of spatial and temporal teleconnections of ENSO variability over equatorial South America.

Acknowledgements

We thank Susanne Spannl, Wolfgang Pfautsch, Roswitha Höfner-Stich, and Dr. Christoph Mayr for technical assistance and helpful comments. This study was supported by the German Research Foundation (DFG) by funding the projects BR 1895/14-1/2 (FOR 816) and BR 1895/23-1 (PAK 823). Furthermore, special thanks go to the anonymous reviewer who helped to improve the manuscript considerably.

References

NOAA (National Oceanic and Atmospheric Administration) http://www.esrl.noaa.gov/psd/data/climateindices/list/index.html (Date: 23.02.2015)

NOAA (National Oceanic and Atmospheric Administration) http://www.ncdc.noaa.gov/data-access/paleoclimate-data/datasets/ice-core (Date: 03.03.2015)

Richter, M.; Beck, E.; Rollenbeck, R. and Bendix, J. (2013): Isotopic com-
sternBerg, l.; deniro, m. J.
sternBerg, l.
makeschin, F.; mosandi, R.; scheu, S. and willcie, W.
(eds.): Ecosystem services, biodiversity and environmental-
change in a tropical mountain ecosystem of South Ecuador. Berlin, Heidelberg, 1–19. DOI: 10.1007/978-3-642-38137-9_1
weather radar data and meteorological field observations.
 atmosres.2010.10.018
Rozendaal, D. M. A.; Brienen, R. J. W.; Soliz-Gamboa, C. C.
and ZuideMa, P. A. (2010): Tropical tree rings reveal preferen-
tial survival of fast-growing juveniles and increased
juvenile growth rates over time. In: New Phytologist 185,
759–769. DOI: 10.1111/j.1469-8137.2009.03109.x
Sano, M.; Xu C and NAKatsuka, T. (2012): A 300-year Vi-
etnam hydroclimate and ENSO variability record recon-
structed from tree-ring δ18O. In: Journal of Geophysical
Research 117, D12115. DOI: 10.1029/2012JD017749
Schollean, K.; Heinrich, I.; Neuwirth, B.; Krusic, P. J.
tiple tree-ring chronologies (ring-width, δ13C and δ18O) reveal dry and rainy season rainfall in Indonesia.
In: Quaternary Science Reviews 73, 170–181. DOI: 10.1016/j.quascirev.2013.05.018
Schöngart, J.; PIEDade, M. T. F.; LudwigsHausen, S.; Horna,
forests. In: Journal of Tropical Ecology 18, 581–597. DOI: 10.1017/s0266467402002389
Soliz-Gamboa, C. C.; Sandbrink, A. and ZuideMa, P. A.
(2012): Diameter growth of juvenile trees after gap for-
mation in a Bolivian rain forest: responses are strongly
dependent on the climate controls on the isotopic composition of precipitation over the past ~1800 years.
In: Science 340, 945–950. DOI: 10.1126/science.1234210
Treydte, K.; BODA, S.; Graf PANNATIER, E.; FONTI, P.; Frank,
Werner, W. and Gessler, A. (2014): Seasonal transfer of oxygen isotopes from precipitation and soil to the tree
ring: source water versus needle water enrichment. In:
New Phytologist, 1–12. DOI: 10.1111/nph.12741
Tree-ring δ18O in African mahogany (Entandrophragma
utile) records regional precipitation and can be used for climate reconstructions. In: Global and Planetary Change
127, 58–66. DOI: 10.1016/j.gloplacha.2015.01.014
Villacis, M.; Vimeux, F. and Tulipin, J. D. (2008): Analysis of the climate controls on the isotopic composition of precipitation (δ18O) at Nuevo Rocafuerte, 74.5°W, 0.9°S, 250
crte.2007.11.003
Vimeux, F.; Ginot, P.; SchiewKowski, M.; Vuille, M.; Hoff-
mann, G.; Thompson, L. G. and Schotterer, U. (2009):
Climate variability during the last 1000 years inferred from
Andean ice cores: a review of methodology and recent results. In: Palaeogeography, Palaeoclimatology, Palaeoecol-
ogy 281, 229–241. DOI: 10.1017/s00468-010-0461-6
Volland-voigt, F.; Brauning, A.; GANzhi, O.; Peters, T.
and MAza, H. (2011): Radial stem variations on Tabebuia
chrysanthaa (Bignoniacae) in different tropical forest eco-
systems of southern Ecuador. In: Trees 25, 39–48. DOI:
10.1007/s00468-010-0461-6
ENSO variability: observations and model results. In:
Climate Dynamics 25, 401–413. DOI: 10.1007/s00382-005-0049-9
of the stable water isotopes in precipitation over South America: comparing regional to global circulation
models. In: Journal of Climate 20, 3730–3750. DOI:
10.1175/JCLI4194.1
Thompson, L. G.; Mosley-Thompson, E.; Davis, M. E.; Lin
P-N.; Henderson, K. A.; CoLe-Dai, J.; Bolzan, J. F. and
LIU, K.-b. (1995): Late Glacial Stage and Holocene tropical ice core records from Huascaran, Peru. In: Science
269, 46–50. DOI: 10.1126/science.269.5220.46
Thompson, L. G.; Mosley-Thompson, E. and Henderson,
K. A. (2000): Ice-core palaeoclimatic records in tropical
South America since the Last Glacial Maximum.
DOI: 10.1002/1099-1417(200005)15:4<377::AID-
QJS452>3.0.CO;2-L
Thompson, L. G.; Mosley-Thompson, E.; Davis, M. E.;
Zagorodnov, V. S.; Howat, I. M.; Mikhailenko, V. N.
and LIN, P.-N. (2013): Annually resolved ice core records of tropical climate variability over the past ~1800 years.
In: Science 340, 945–950. DOI: 10.1126/science.1234210
and ENSO variability: observations and model results. In:
Climate Dynamics 25, 401–413. DOI: 10.1007/
s00382-005-0049-9

WISER (Water Isotope System for Data Analysis, Visualization and Electronic Retrieval) http://www.univie.ac.at/cartography/project/wiser/ (Date: 23.02.2015)

Authors

Franziska Volland
Prof. Dr. Achim Bräuning
Friedrich-Alexander-University of Erlangen-Nuremberg
Department of Geography
Wetterkreuz 15
91058 Erlangen
Germany
franziska.volland@fau.de

Darwin Pucha
Universidad Nacional de Loja
Carrera de Ingeniería Forestal
Ciudadela Universitaria Guillermo Falconí Espinosa “La Argelia”
Loja,
Ecuador